欢迎访问作物学报,今天是

作物学报

• •    

基于DSSAT模型模拟气候变化对新疆棉花物候期及产量的影响

周琦翔,朱艳,汪楚博,朱柏林,李俊博,宋利兵*   

  1. 石河子大学水利建筑工程学院 / 现代节水灌溉兵团重点实验室,新疆石河子 832000
  • 收稿日期:2025-07-25 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-07
  • 通讯作者: 宋利兵, E-mail: songlibing@shzu.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(52169011),新疆生产建设兵团科技计划项目(2023CB010),乡村振兴产业发展科技行动项目(2024NC068)和自治区天池英才青年博士-宋利兵项目资助。

Modeling the effects of climate change on cotton phenology and potential yield in Xinjiang based on the DSSAT model

Zhou Qi-Xiang,Zhu Yan,Wang Chu-Bo,Zhu Bo-Lin,Li Jun-Bo,Song Li-Bing*   

  1. Water-Saving Irrigation, Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang, China
  • Received:2025-07-25 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-07
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (52169011), the Science and Technology Program of the Xinjiang Production and Construction Corps (2023CB010), the Rural Revitalization Industrial Development Science and Technology Action Project (2024NC068), and the "Tianchi Talents" Young Doctor Program of the Xinjiang Uygur Autonomous Region (Project awarded to Dr. Libing Song).

摘要:

新疆作为中国最重要的棉花生产基地,其生产安全对保障国家农业经济具有重要意义。为定量评估气候变化对新疆棉花生长的影响,本研究基于新疆14个农业气象观测站和65个气象观测站点1990—2020年的逐日气象资料和棉花生长观测数据,对DSSAT作物模型进行调参和验证;利用模型分析新疆棉花物候期和潜在产量的时空演变特征;并通过Mann-Kendall检验和去趋势分析方法解析了关键气候因子的贡献率。结果表明:(1) 新疆棉花播种开花期天数、播种成熟期天数和产量模拟值与观测值调参(验证)的绝对相对误差分别为1.80% (1.51%)0.85% (1.18%)5.38% (5.44%),归一化均方根误差分别为9.56% (14.06%)9.71% (11.50%)11.30% (11.34%)DSSAT模型表现出良好的模拟性能。(2) 在棉花播期和品种保持不变条件下,1990—2020年新疆棉花播种开花期天数和播种成熟期天数分别以1.26 d 10a?12.54 d 10a?1的速率显著缩短(P < 0.05),而潜在产量则以159.61 kg hm?2 10a?1的速率显著增加;(3) 空间分析显示,各站点棉花物候期及产量变化均达到显著水平(P < 0.05),其中播种开花期、播种成熟期和潜在产量达到显著/极显著水平的站点分别占33.8% (55.4%)24.76 (64.6%)29.2% (50.8%);各气象因子对棉花潜在产量的影响效应从大到小表现为每日太阳辐射>日最高气温>降雨>日最低温度。DSSAT模型可较好地模拟新疆棉花生长发育和产量,气候变化明显影响新疆棉花物候期和棉花潜在产量。本研究可为新疆乃至其他地区棉花作物模型研究、产量预报和气候变化评估提供数据支撑和理论依据。

关键词: 新疆棉花, DSSAT模型, 气候变化, 物候期, 产量

Abstract: As China’s most important cotton production base, Xinjiang plays a crucial role in safeguarding national agricultural and economic security. To quantitatively assess the impact of climate change on cotton growth in this region, daily meteorological data (1990–2020) from 14 agro-meteorological observation stations and 65 meteorological stations, along with cotton growth observation records, were used to calibrate and validate the DSSAT crop model. The validated model was then employed to analyze the spatiotemporal variations in cotton phenology and potential yield across Xinjiang. Additionally, the contributions of key climatic factors were examined using the Mann–Kendall trend test and detrending analysis. The results showed that: (1) For calibration (and validation), the absolute relative errors between simulated and observed values for sowing–flowering date, sowing–maturity date, and yield were 1.80% (1.51%), 0.85% (1.18%), and 5.38% (5.44%), respectively, with normalized root mean square errors of 9.56% (14.06%), 9.71% (11.50%), and 11.30% (11.34%), indicating good model performance. (2) Under fixed sowing dates and cultivar conditions, the durations of sowing–flowering and sowing–maturity significantly decreased (P < 0.05) at rates of 1.26 d 10a?1 and 2.54 d 10a?1, respectively, from 1990 to 2020, while potential yield significantly increased at a rate of 159.61 kg hm?2 10a?1. (3) Spatial analysis revealed that changes in cotton phenology and yield were significant at most stations (P < 0.05), with the proportions of stations showing significant or highly significant trends being 33.8% (55.4%) for sowing–flowering, 24.7% (64.6%) for sowing–maturity, and 29.2% (50.8%) for potential yield. The relative contributions of climatic factors to potential yield were ranked as follows: daily solar radiation > maximum temperature > precipitation > minimum temperature. Overall, the DSSAT model effectively simulated cotton growth, development, and yield in Xinjiang, and climate change was found to have a significant impact on cotton phenology and potential yield. These findings provide valuable data support and a theoretical basis for crop model applications, yield forecasting, and climate impact assessments in Xinjiang and similar agro-ecological regions.

Key words: Xinjiang cotton, DSSAT model, climate change, phenology, yield

[1] 蒙继华, 王亚楠, 林圳鑫, . 作物生长模型研究现状与展望. 农业机械学报, 2024, 55(2): 1–15.
Meng J H, Wang Y N, Lin Z X, et al. Progress and perspective of crop growth models. Trans CSAM, 2024, 55(2): 1–15 (in Chinese with English abstract).

[2] 彭慧文, 赵俊芳, 谢鸿飞, . 作物模型应用与遥感信息集成技术研究进展. 中国农业气象, 2022, 43: 644–656.
Peng H W, Zhao J F, Xie H F, et al. Progresses of crop model application and its integration with remote sensing technology. Chin J Agrometeorol, 2022, 43: 644–656 (in Chinese with English abstract).

[3] 郭建平. 作物生长模型发展及应用中的问题探讨. 应用生态学报, 2025, 36: 1579–1589.
Guo J P. Discussion on problems in the development and application of crop growth model. Chin J Appl Ecol, 2025, 36: 1579–1589 (in Chinese with English abstract).

[4] 王兴鹏, 辛朗, 杜江涛, . 基于DSSAT模型的南疆膜下滴灌棉花生长与产量模拟. 农业机械学报, 2022, 53(9): 314–321.
Wang X P, Xin L, Du J T, et al. Simulation of cotton growth and yield under film drip irrigation condition based on DSSAT model in southern Xinjiang. Trans CSAM, 2022, 53(9): 314–321 (in Chinese with English abstract).

[5] 谭红, 吕新, 张泽, . 基于DSSAT模型模拟的气候变化对棉花生产潜力影响研究. 棉花学报, 2020, 32(2): 113–120.
Tan H, Lyu X, Zhang Z, et al. Influence of climate change on cotton production potential based on DSSAT model simulation. Cotton Sci, 2020, 32(2): 113–120 (in Chinese with English abstract).

[6] 王昱, 高浚. DSSAT作物模型对南疆地区棉花生长的模拟研究. 农业与技术, 2022, 42(19): 42–45.
Wang Y, Gao J. Simulation study on cotton growth in southern Xinjiang by DSSAT crop model. Agric Technol, 2022, 42(19): 42–45 (in Chinese with English abstract).

[7] 高浚, 周保平, 王昱, . 基于EFASTDSSAT模型对南疆地区棉花参数敏感性分析及适用性评价. 江苏农业科学, 2022, 50(5): 185–191.
Gao J, Zhou B P, Wang Y, et al. Sensitivity analysis and applicability evaluation of DSSAT model based on EFAST for cotton parameters in southern Xinjiang. Jiangsu Agric Sci, 2022, 50(5): 185–191 (in Chinese with English abstract).

[8] Deng Z Y, Zhang Q, Pu J Y, et al. Impact of climate warming on crop planting and production in Northwest China. Acta Ecol Sin, 2008, 28: 3760–3768.

[9] McMichael B L, Hesketh J D. Field investigations of the response of cotton to water deficits. Field Crops Res, 1982, 5: 319–333.

[10] Bange, Michael. Effects of climate change on cotton growth and development. Australian Cottongrower, 2007, 28: 4145. 

[11] 湘玲, 吕新. 石河子垦区气候变化与棉花产量的关系. 湖北农业科学, 2011, 50: 1533–1536.
Tang X L, Lyu X. The relationship between climate change and yield of cotton in Shihezi Region. Hubei Agric Sci, 2011, 50: 1533–1536 (in Chinese with English abstract).

[12] Chen C, Pang Y M, Pan X B, et al. Impacts of climate change on cotton yield in China from 1961 to 2010 based on provincial data. J Meteor Res, 2015, 29: 515–524.

[13] Huang J, Ji F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int J Biometeorol, 2015, 59: 877–888.

[14] Li N, Lin H X, Wang T X, et al. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Res, 2020, 247: 107590.

[15] 陈超, 潘学标, 张立祯, . 气候变化对石羊河流域棉花生产和耗水的影响. 农业工程学报, 2011, 27(1): 57–65.
Chen C, Pan X B, Zhang L Z, et al. Impact of climate change on cotton production and water consumption in Shiyang River Basin. Trans CSAE, 2011, 27(1): 57–65 (in Chinese with English abstract).

[16] 陈柏青, 张悦, 王科, . 基于APSIM的新疆棉花生长与产量动态预测方法. 农业机械学报, 2025, 56(5): 82–90.
Chen B Q, Zhang Y, Wang K, et al. Dynamic predictions of cotton growth and yield in Xinjiang based on APSIM model. Trans CSAE, 2025, 56(5): 82–90 (in Chinese with English abstract).

[17] 高婧, 李茂春, 毛荣, . 1991―2022年新疆塔城地区植棉区气候变化对棉花生育期的影响. 中国棉花, 2024, 51(2): 16–23.
Gao J, Li M C, Mao R, et al. Effects of climate change on the growth period of cotton in main cotton areas of Tacheng Prefecture, Xinjiang. China Cotton, 2024, 51(2): 16–23 (in Chinese with English abstract).

[18] Li Y, Li N, Javed T, et al. Cotton yield responses to climate change and adaptability of sowing date simulated by AquaCrop model. Ind Crops Prod, 2024, 212: 118319.

[19] 郭燕云, 王雪姣, 王森, . 新疆棉花物候期对气候变化的响应及敏感性分析. 中国农学通报, 2022, 38(18): 113–121.
Guo Y Y, Wang X J, Wang S, et al. Cotton phenology in Xinjiang: the response to climate change and sensitivity analysis. Chin Agric Sci Bull, 2022, 38(18): 113–121 (in Chinese with English abstract).

[20] 张泓, 吐尔逊江·买买提, 张少民, . 新疆棉花生产时空格局演变特征分析. 新疆农业科学, 2023, 60: 766–780.
Zhang H, Tuerxunjiang·Maimaiti, Zhang S M, et al. Analysis on the spatial and temporal pattern of cotton production in Xinjiang and its influencing factors. Xinjiang Agric Sci, 2023, 60: 766–780 (in Chinese with English abstract).

[21] 张志高, 李艳敏, 袁征, . 1988—2020年新疆棉花生产格局与贡献因素. 农业资源与环境学报, 2024, 41: 1192–1200.
Zhang Z G, Li Y M, Yuan Z, et al. Cotton production pattern and contribution factors in Xinjiang from 1988 to 2020. J Agric Resour Environ, 2024, 41: 1192–1200 (in Chinese with English abstract).

[22] Hoogenboom G, Wilkens P W, Tsuji G Y. DSSAT v3, Volume 1. Honolulu, Hawaii: University of Hawaii, 1999. pp 1–15. 

[23] Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model. Eur J Agron, 2003, 18: 235–265.

[24] Jones J W, Hoogenboom G, Wilkens P W, et al. Decision Support System for Agrotechnology Transfer Version 4.0. Volume 4. dssat v4.5: Crop Model Documentation. Honolulu: University of Hawaii, 2010. pp 1–9.

[25] Ghimire B, Adedeji O, Ritchie G L, et al. Simulating crop yields and water productivity for three cotton-based cropping systems in the Texas High Plains. Crop Environ, 2025, 4: 83–96.

[26] Li Z, Menefee D, Yang X, et al. Simulating productivity of dryland cotton using APSIM, climate scenario analysis, and remote sensing. Agric For Meteor, 2022, 325: 109148.

[27] Yang J M, Yang J Y, Liu S, et al. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst, 2014, 127: 81–89.

[28] Jiang R, He W T, He L, et al. Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Sci Rep, 2021, 11: 810.

[29] 魏凤英. 现代气候统计诊断与预测技术. 2. 北京: 气象出版社, 2007.
Wei F Y. Modern Climate Statistical Diagnosis and Prediction Technology. 2nd edn. Beijing: China Meteorological Press, 2007 (in Chinese).

[30] Pourebrahimi Foumani M, Yin X H, Fu J S, et al. Impact of future climate from different general circulation models on cotton yield predictions in north Cotton Belt through crop simulation with DSSAT. Field Crops Res, 2025, 322: 109719.

[31] Wang X P, Wang H B, Si Z Y, et al. Modelling responses of cotton growth and yield to pre-planting soil moisture with the CROPGRO-Cotton model for a mulched drip irrigation system in the Tarim Basin. Agric Water Manag, 2020, 241: 106378.

[32] 程珍, 牛建龙, 马玉婷, . 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化. 中国农业科技导报, 2024, 26(10): 206–214.
Cheng Z, Niu J L, Ma Y T, et al. Dynamic changes of cotton phenological stages in alar reclamation area of southern Xinjiang from 1990 to 2020. J Agric Sci Technol, 2024, 26(10): 206–214 (in Chinese with English abstract).

[33] 阿布都克日木·阿巴司, 胡素琴, 努尔帕提曼·买买提热依木. 新疆喀什气候变化对棉花发育期及产量的影响分析. 中国生态农业学报, 2015, 23: 919–930.
Abudukerimu ABASI, Hu S Q, Nu’erpatiman MAIMAITIREYIMU. Effect of climate change on cotton growth period and yield in Kashgar City, Xinjiang Uygur Autonomous Region. Chin J Eco-Agric, 2015, 23: 919–930 (in Chinese with English abstract).

[34] 董海波, 陈小平, 冯绍元, . 模拟气候变化对极端干旱区棉花产量和水分利用效率的影响. 灌溉排水学报, 2022, 41(9): 23–32.
Dong H B, Chen X P, Feng S Y, et al. Effects of climate change on seed yield and water use efficiency of cotton in arid regions: a simulation study. J Irrig Drain, 2022, 41(9): 23–32 (in Chinese with English abstract).

[35] Li N, Li Y, Yang Q L, et al. Simulating climate change impacts on cotton using AquaCrop model in China. Agric Syst, 2024, 216: 103897.

[36] Han W R, Liu S L, Wang J, et al. Climate variation explains more than half of cotton yield variability in China. Ind Crops Prod, 2022, 190: 115905.

[37] 王海江, 高嵩, 李瑞春, . 气候变化对我国棉花生长的影响及适应措施分析. 园艺与种苗, 2023, 43(6): 72–75.
Wang H J, Gao S, Li R C, et al. Analysis of climate change on cotton growth and adaptive measures in China. Hortic Seed, 2023, 43(6): 72–75 (in Chinese with English abstract).

[38] Mi Y D, Wang Y R, Wu F Q, et al. Yield variation in early-maturing cotton in response to sowing dates and growing seasons is associated with differential resource utilization. Eur J Agron, 2025, 168: 127637.

[39] Feng L, Wan S M, Zhang Y L, et al. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res, 2024, 312: 109401.

[40] 白岩, 毛树春, 田立文, . 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50: 38–50.
Bai Y, Mao S C, Tian L W, et al. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Sci Agric Sin, 2017, 50: 38–50 (in Chinese with English abstract). 

[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[10] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[11] 王芬, 吴东丽, 张全军. 湖北省一季稻发育期对气候变化的响应[J]. 作物学报, 2025, 51(7): 1934-1948.
[12] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[13] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[14] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[15] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!