欢迎访问作物学报,今天是

作物学报

• •    

大豆玉米不同条带间作对玉米带水热时空动态变化及玉米产量效益的影响

陈宣伊1,2,3,张健伟1,2,张向前1,2,*,葛国龙3,路战远1,2,3,*,郭星星4,马子惠4,李欣艺4,陈立宇1,2   

  1. 1 内蒙古自治区农牧业科学院,内蒙古呼和浩特 010031; 2 农业农村部黑土地保护与利用重点实验室, 内蒙古呼和浩特 010031; 3 内蒙古大学生命科学学院, 内蒙古呼和浩特 010020; 4 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2025-07-15 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-07
  • 通讯作者: 张向前, E-mail: zhangxiangqian_2008@126.com; 路战远, E-mail: lzhy2811@163.com
  • 基金资助:
    本研究由内蒙古自治区科技计划项目(2022YFDZ0071),内蒙古农牧业创新基金项目(2023CXJJN18),内蒙古自治区科技领军人才项目(2022LJRC0010)和内蒙古自治区草原英才科技计划项目资助。

Study on the impact of different soybean–maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns

Chen Xuan-Yi1,2,3,Zhang Jian-Wei1,2,Zhang Xiang-Qian1,2,*,Ge Guo-Long3,Lu Zhan-Yuan1,2,3,*,Guo Xing-Xing4,Ma Zi-Hui4,Li Xin-Yi4,Chen Li-Yu1,2   

  1. 1 Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China;2 Key Laboratory of Black Soil Conservation and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot 010031, Inner Mongolia, China; 3 School of Life Sciences, Inner Mongolia University, Hohhot 010020, Inner Mongolia, China; 4 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2025-07-15 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-07
  • Supported by:
    This study was supported by the Science and Technology Program of Inner Mongolia Autonomous Region (2022YFDZ0071), the Inner Mongolia Agricultural and Animal Husbandry Innovation Fund (2023CXJJN18), the Science and Technology Leading Talent Program of Inner Mongolia Autonomous Region (2022LJRC0010), and the Prairie Talent Science and Technology Program of Inner Mongolia Autonomous Region.

摘要: 为明确内蒙古东北黑土区适宜的大豆玉米条带间作模式,于2023年和2024年在大兴安岭东麓阿荣旗以玉米和大豆为供试材料,系统研究了玉米大豆不同间作模式2行玉米‖2行大豆(M2S2)4行玉米‖4行大豆(M4S4)4行玉米‖2行大豆(M4S2)6行玉米‖6行大豆(M6S6)6行玉米‖4行大豆(M6S4)6行玉米‖2行大豆(M6S2)的玉米带土壤水热时空动态变化规律及产量差异。结果表明,(1) M4S4M2S2土壤含水量在关键生育时期普遍高于其余处理,土壤表层温度显著低于其余处理;M2S2在抽雄吐丝期和灌浆期土壤含水量分别比其他处理增加1.59%~16.85%1.89%~14.82%,与M4S4差异不显著;同时2处理在全生育时期下表现出较为均匀的水分分布;(2) 玉米单株产量、水分利用效率均以M2S2最高、M4S4次高;M4S4土地当量比最高,在2年间分别为1.611.60,复合种植系统的产投比也以M4S4最高,达6.61,比其他处理提高7.39%~32.28%。综上所述,M4S4带状间作布局是较适宜内蒙古东北黑土区推广的大豆玉米带状间作种植模式。

关键词: 玉米, 间作, 土壤温度, 土壤含水量, 产量, 经济效益

Abstract:

To identify the optimal intercropping pattern of soybean and maize in the black soil region of Northeast Inner Mongolia, a systematic field study was conducted in 2023 and 2024 in Arong Banner, located at the eastern foothills of the Greater Xing'an Range, using maize and soybean as experimental crops. The study examined the spatiotemporal dynamics of soil moisture and temperature within maize strips and assessed yield differences across various intercropping configurations: 2 rows of maize ‖ 2 rows of soybean (M2S2), 4 rows of maize ‖ 4 rows of soybean (M4S4), 4 rows of maize ‖ 2 rows of soybean (M4S2), 6 rows of maize ‖ 6 rows of soybean (M6S6), 6 rows of maize ‖ 4 rows of soybean (M6S4), and 6 rows of maize ‖ 2 rows of soybean (M6S2). The results showed that (1) the soil moisture in M4S4 and M2S2 treatments was generally higher than in the other configurations during critical growth stages, while surface soil temperature was significantly lower. Compared with other treatments, M2S2 increased soil moisture by 1.59% to 16.85% during the tasseling–silking stage and by 1.89% to 14.82% during the grain-filling stage, with no significant difference from M4S4. Both treatments also exhibited relatively uniform water distribution throughout the growth period. (2) Maize in the M2S2 treatment achieved the highest single-plant yield and water use efficiency, followed by M4S4. M4S4 recorded the highest land equivalent ratio, reaching 1.61 and 1.60 in 2023 and 2024, respectively. Furthermore, M4S4 exhibited the highest input-output ratio of the intercropping systems, reaching 6.61, 7.39% to 32.28% higher than in other treatments. In conclusion, the M4S4 strip intercropping layout is identified as the most suitable pattern for soybean–maize intercropping in the black soil region of Northeast Inner Mongolia.

Key words: maize, intercropping, soil temperature, soil moisture, yield, economic benefit

[1] 国家统计局. 2024年国家统计年鉴. 北京: 中国统计出版社, 2024.

National Bureau of Statistics of China. China Statistical Yearbook 2024. Beijing: China Statistics Press, 2024 (in Chinese).

[2] 李国景, 罗其友. 我国耕地资源保护与利用体系、挑战与对策. 山西农业大学学报(社会科学版), 2023, 22(6): 9–15.

Li G J, Luo Q Y. The system, challenges and countermeasures of the protection and utilization of China’s cultivated land resources. J Shanxi Agric Univ (Soc Sci Edn), 2023, 22(6): 9–15 (in Chinese with English abstract).

[3] 陈源源, 孙艺. 未来30年我国粮食增产潜力与保障能力研究. 四川农业大学学报, 2022, 40: 312–318.

Chen Y Y, Sun Y. Study on the production increasing potential and guarantee capability of grain in China in the next 30 years. J Sichuan Agric Univ, 2022, 40: 312–318 (in Chinese with English abstract).

[4] 奎国秀, 祁春节, 方国柱. 中国主要粮食产品进口贸易的资源效应和环境效应研究. 世界农业, 2021(5): 16–25.

Kui G X, Qi C J, Fang G Z. Study on the resource effect and environmental effect of China’s import trade of major grain. World Agric, 2021(5): 16–25 (in Chinese with English abstract).

[5] 冉漫雪, 孙东宝, 丁军军. 种植模式对作物产量及间作系统种间关系的影响. 干旱地区农业研究, 2024, 42(6): 61–68.

Ran M X, Sun D B, Ding J J. Effects of cropping patterns on crop yields and interspecific relationships in intercropping systems. Agric Res Arid Areas, 2024, 42(6): 61–68 (in Chinese with English abstract).

[6] Brooker R W, Bennett A E, Cong W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol, 2015, 206: 107–117.

[7] 武维华. 植物生理学. 北京: 科学出版社, 2003. pp 68–69. 

Wu W H. Phytophysiology. Beijing: Science Press, 2003. pp 68–69 (in Chinese). 

[8] 张唯一, 张志亮, 郑彩霞, . 玉米-大豆间作系统土壤水分分布特征研究进展. 灌溉排水学报, 2018, 37(增刊2): 131–133.

Zhang W Y, Zhang Z L, Zheng C X, et al. Advance of soil moisture distribution characteristics in maize-soybean intercropping system. J Irrig Drain, 2018, 37(S2): 131–133 (in Chinese with English abstract).

[9] 李俊祥, 宛志沪. 淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究. 应用生态学报, 2002, 13: 390–394.

Li J X, Wan Z H. Microclimatic effect and soil moisture change of poplar-wheat intercropping systems in Huaibei Plain. Chin J Appl Ecol, 2002, 13: 390–394 (in Chinese with English abstract).

[10] 李倩倩, 王星运, 李孟浩, . 小麦玉米间作和氮肥对作物耗水特性及水分利用的影响. 西北农业学报, 2021, 30: 819–828.

Li Q Q, Wang X Y, Li M H, et al. Effects of wheat/maize strip intercropping and nitrogen fertilizer on crops water consumption and water use. Acta Agric Boreali-Occident Sin, 2021, 30: 819–828 (in Chinese with English abstract).

[11] 鲜高结. 西北半干旱地区水分调控措施对玉米大豆带状间作水分利用效率的影响. 四川农业大学硕士学位论文, 四川雅安, 2024.

Xian G J. Effect of Water Control Measures on Water Use Efficiency of Maize-soybean Strip Intercropping in Semi-arid Area of Northwest China. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2024 (in Chinese with English abstract).

[12] 马亮. 干旱区滴灌枣-棉间作系统蒸发蒸腾量及地下竞争关系研究. 新疆农业大学博士学位论文, 新疆乌鲁木齐, 2018.

Ma L. Study on the Relationship between Evapotranspiration and Underground Competition of Jujube-cotton Intercropping System under Drip Irrigation in Arid Area. PhD Dissertation of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract). 

[13] Du S N, Bai G S, Yu J. Soil properties and apricot growth under intercropping and mulching with erect milk vetch in the loess hilly-gully region. Plant Soil, 2015, 390: 431–442.

[14] 刘席文, 马淑梅, 余常兵, . 长江流域田间配置对玉米-大豆带状复合种植群体产量和气候资源利用效率的影响. 四川农业大学学报, 2024, 42: 724–734.

Liu X W, Ma S M, Yu C B, et al. Effects of field configuration on yield and climate resource utilization efficiency of maize-soybean strip intercropping in the Yangtze River Basin. J Sichuan Agric Univ, 2024, 42: 724–734 (in Chinese with English abstract).

[15] 袁晓婷, 汤松, 罗凯, . 大豆玉米带状复合种植产量与效益分析: 基于全国16个示范省(市、区)的调查数据. 四川农业大学学报, 2023, 41: 834–841.

Yuan X T, Tang S, Luo K, et al. Yield and benefit analysis of soybean and maize strip compound planting: based on survey data of 16 demonstration provinces (municipalities, autonomous regions). J Sichuan Agric Univ, 2023, 41(5): 834–841 (in Chinese with English abstract).

[16] Tao Z Q, Li C F, Li J J, et al. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang–Huai-Hai Valley. Crop J, 2015, 3: 445–450.

[17] Martin-Guay M O, Paquette A, Dupras J, et al. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci Total Environ, 2018, 615: 767–772.

[18] 张振, 石玉, 张永丽, . 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响. 作物学报, 2023, 49: 1895–1905.

Zhang Z, Shi Y, Zhang Y L, et al. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf. Acta Agron Sin, 2023, 49: 1895–1905 (in Chinese with English abstract).

[19] 陈江鲁, 杨京京, 丁变红, . 滴灌量对新疆高产玉米产量和蒸腾量的影响. 江苏农业科学, 2017, 45(18): 67–71.

Chen J L, Yang J J, Ding B H, et al. Effect of drip irrigation on yield and transpiration of high-yield maize in Xinjiang. Jiangsu Agric Sci, 2017, 45(18): 67–71 (in Chinese with English abstract).

[20] 柴强, 殷文. 间作系统的水分竞争互补机理. 生态学杂志, 2017, 36(1): 233–239.

Chai Q, Yin W. Research advances in water competition and complementary interaction of intercropping agroecosystems. Chin J Ecol, 2017, 36(1): 233–239 (in Chinese with English abstract). 

[21] 刘景辉, 曾昭海, 焦立新, . 不同青贮玉米品种与紫花苜蓿的间作效应. 作物学报, 2006, 32: 125–130.

Liu J H, Zeng Z H, Jiao L X, et al. Intercropping of different silage maize cultivars and alfalfa. Acta Agron Sin, 2006, 32: 125–130 (in Chinese with English abstract). 

[22] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305–312.

[23] Fang J, Ma J, Wen T, et al. Cry for help from rhizosphere microbiomes and self-rescue strategies cooperatively alleviate drought stress in spring wheat. Soil Biol Biochem, 2025, 206: 109813. 

[24] 闫小红. 间作模式下不同带宽对土壤含水量的影响. 杨凌职业技术学院学报, 2024, 23(1): 18–21.

Yan X H. Effects of different bandwidths on soil moisture content under intercropping patterns. J Yangling Vocat Tech Coll, 2024, 23(1): 18–21 (in Chinese with English abstract). 

[25] 高阳. 玉米/大豆条带间作群体PAR和水分的传输与利用. 中国农业科学院博士学位论文, 北京, 2009.

Gao Y. Transport and Use of PAR and Water in Maize/Soybean Strip Intercropping System. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract). 

[26] Bekele B, Ademe D, Gemi Y, et al. Evaluation of intercropping legume covers with maize on soil moisture improvement in misrak azerinet berbere woreda, SNNPR, Ethiopia. Water Conserv Sci Eng, 2021, 6: 145–151.

[27] 高阳, 段爱旺, 刘战东, . 玉米/大豆间作条件下的作物根系生长及水分吸收. 应用生态学报, 2009, 20: 307–313.

Gao Y, Duan A W, Liu Z D, et al. Crop root growth and water uptake in maize/soybean strip intercropping. Chin J Appl Ecol, 2009, 20: 307–313 (in Chinese with English abstract).

[28] Liu S P, Wang L X, Khan I, et al. Comparative study of straw mulching and interplanting patterns on water use efficiency and productivity of the maize-soybean cropping system. Environ Dev Sustain, 2025, 27: 16883–16911.

[29] Feng L, Shi K, Liu X, et al. Optimizing trade-offs between light transmittance and intraspecific competition under varying crop layouts in a maize–soybean strip relay cropping system. Crop J, 2024, 12: 1780–1790.

[30] 徐延辉, 王畅, 郑殿峰, . 带状复合种植对玉米和大豆光合特性及籽粒产量的影响. 大豆科学, 2017, 36: 540–546.

Xu Y H, Wang C, Zheng D F, et al. Effects of the strip compound planting system on photosynthetic characteristics and grain yield of maize and soybean. Soybean Sci, 2017, 36: 540–546 (in Chinese with English abstract).

[31] 蔡倩, 孙占祥, 郑家明, . 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54: 909–920.

Cai Q, Sun Z X, Zheng J M, et al. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning Province. Sci Agric Sin, 2021, 54: 909–920 (in Chinese with English abstract).

[32] 杨科, 徐红丽, 许靖宜, . 玉米大豆带状复合种植模式产量与效益研究. 安徽农业科学, 2021, 49(17): 40–42.

Yang K, Xu H L, Xu J Y, et al. Study on yield and benefit of zonal compound planting pattern of maize and soybean. J Anhui Agric Sci, 2021, 49(17): 40–42 (in Chinese with English abstract).

[33] 雍太文, 杨文钰. 玉米大豆带状复合种植技术的优势、成效及发展建议. 中国农民合作社, 2022(3): 20–22.

Yong T W, Yang W Y. Advantages, effects and development suggestions of strip compound planting technology of corn and soybean. China Farmers’ Coop, 2022(3): 20–22 (in Chinese with English abstract).

[34] 刘燕, 陈彬, 于庆旭, . 大豆玉米带状复合种植机械化技术与装备研究进展. 中国农机化学报, 2023, 44(1): 39–47.

Liu Y, Chen B, Yu Q X, et al. Research progress of mechanization technology and equipment of soybean and corn strip compound planting. J Chin Agric Mech, 2023, 44(1): 39–47 (in Chinese with English abstract). 

[35] 江景涛, 王东伟, 杨文卿, . 我国间作播种机械化技术及装备探析. 江苏农业科学, 2021, 49(14): 40–44.

Jiang J T, Wang D W, Yang W Q, et al. Analysis of technology and equipment of intercropping and seeding mechanization in China. Jiangsu Agric Sci, 2021, 49(14): 40–44 (in Chinese with English abstract).

[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[3] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[4] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[5] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[6] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[7] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[8] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[9] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[10] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[11] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[12] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[13] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[14] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[15] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!