欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (03): 482-490.

• 研究论文 • 上一篇    下一篇

氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响

张立新1,2; 李生秀2,*   

  1. 1西北农林科技大学生命学院; 2西北农林科技大学资源环境学院,陕西杨凌712100
  • 收稿日期:2006-05-23 修回日期:1900-01-01 出版日期:2007-03-12 网络出版日期:2007-03-12
  • 通讯作者: 李生秀

Effects of Nitrogen, Potassium and Glycinebetaine on the Lipid Peroxidation and Protective Enzyme Activities in Water-Stressed Summer Maize

ZHANG Li-Xin 1,2 ; LI Sheng-Xiu 2,*   

  1. 1 College of life sciences; 2 Resource and Environment, Northwest Sci-Tech University of Agriculture and Forestry, Yangling 712100, Shaanxi, China
  • Received:2006-05-23 Revised:1900-01-01 Published:2007-03-12 Published online:2007-03-12
  • Contact: LI Sheng-Xiu

摘要:

采用盆栽试验研究了水分胁迫和适量供水条件下,氮、钾和甜菜碱对2种不同基因型夏玉米陕单9号(抗旱品种)和陕单911(不抗旱品种)各生育期叶片膜脂过氧化和保护酶活性的影响,旨在揭示这些因子通过提高上述酶活性而增强作物抗旱性的生理功能。结果表明,水分胁迫下夏玉米超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著降低,不抗旱品种更甚;而丙二醛(MDA)含量有不同程度升高,抗旱品种的MDA含量和变幅小于不抗旱品种。苗期2个品种对水分胁迫响应较弱,SOD、POD、CAT和MDA均较低;拔节和抽雄期响应强烈,酶活性增高。SOD和POD达到最大值的时间比CAT晚,MDA在全生育期中呈现“升—降—升”的变化规律。施用氮、钾肥和甜菜碱能不同程度地提高夏玉米SOD、POD和CAT活性,降低MDA含量,减缓水分胁迫下膜脂过氧化作用。不抗旱品种施用氮肥增强了水分胁迫条件下叶片SOD、POD、CAT活性,降低了MDA含量,氮肥用量的影响有显著差异;抗旱品种施用低氮效果显著,施用高氮则降低了生育前期酶活性,增加了MDA含量,但生育后期氮肥用量的影响间无显著区别。钾肥和甜菜碱对受水分胁迫的夏玉米表现出比氮肥更突出的效果。而对适量供水条件下的夏玉米,氮、钾肥的作用明显下降,甜菜碱的效果甚至消失。说明施用氮、钾肥和甜菜碱对改善水分胁迫下玉米叶片膜脂过氧化作用和提高保护酶活性有重要贡献。

关键词: 氮, 甜菜碱, 水分胁迫, 夏玉米, 膜脂过氧化, 叶片保护酶

Abstract:

A pot experiment was conducted under water stress and adequate water-supplying conditions with two cultivars of maize Shaandan 9 (drought-resistant) and Shaandan 911 (non-drought-resistant) to study the effects of nitrogen, potassium and glycinebetaine on lipid peroxidation and protective enzyme activities in maize leaves at different growing stages for revealing their biological functions in the rise of crop resistance to drought by raising activities of these protective enzymes. Results showed that under the water stress condition, activities of superoxide dismutase (SOD), catalase (CTA) and peoxidase (POD) in leaves were significantly reduced while malondialdehyde (MDA) content was increased for both cultivars, but the decline was more obvious for the non-drought resistant one. Activities and variation of SOD, CTA and POD were higher while MDA content was lower for the drought resistant cultivar (Shaandan 9) than those for the non-drought resistant cultivar (Shaandan 911). The lower activities of SOD, CTA and POD at seeding stage than those at elongation and heading stages showed that the response of two cultivars to water stress was weaker at earlier than at later stages. Of these protective enzymes, activities of SOD and POD reached their peak later than that of CTA. MDA content followed a changing pattern of “rise-fall-rise” in the entire maize growth period. Applications of nitrogen, potassium and glycinebetaine raised the activities of SOD, CTA and POD while decreased the MDA content, and thus alleviated water stress effect. Under the water-stressed condition, addition of N fertilizer significantly increased activities of SOD, CTA, POD and decreased MDA content for the non-drought resistant cultivar with a significant difference among N rates. The significant response of drought resistant cultivar to N addition was merely found at low N rate. For high N rate, activities of SOD, CTA and POD were significantly decreased whereas MDA content was increased at earlier growth stage. However, at later growth stage, there was no significant difference between two N rates. Glycinebetaine and K fertilizer exhibited more significant biological function than N fertilizer in the rise of protective enzyme activities under the water stress condition. In contrast, with adequate water supply, effects of N and K fertilization significantly decreased, and the function of glycinebetaine even vanished. All the results suggest that addition of nitrogen, potassium and glycinebetaine make a great contribution to improvement of the protective enzyme activities and lipid peroxidation metabolism.

Key words: Nitrogen, Potassium, Glycine betaine, Water- stress, Summer maize, Lipid peroxidation metabolism, Protective enzyme activities

[1] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[2] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[5] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[6] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[7] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[14] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[15] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!