欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 72-81.doi: 10.3724/SP.J.1006.2017.00072

• 耕作栽培·生理生化 • 上一篇    下一篇

生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响

周劲松1,2,闫平2,张伟明1,郑福余2,程效义1,陈温福1,*   

  1. 1沈阳农业大学水稻研究所/辽宁省生物炭工程技术研究中心/农业部东北水稻生物学与遗传育种重点实验室/北方超级粳稻育种教育部重点实验室,辽宁沈阳 110866;2黑龙江省农业科学院五常水稻研究所,黑龙江五常 150229
  • 收稿日期:2016-06-11 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-09-29
  • 通讯作者: 陈温福,E-mail: wfchen5512@126.com
  • 基金资助:

    本研究由国家重点研发计划稻作区土壤培肥与丰产增效耕作技术(2016YFD0300904), 辽宁省高校重大科技平台建设项目(生物炭工程技术研究中心), 沈阳市应用基础研究专项(F16-205-1-38), 国家公益性行业(农业)科研专项(201303095)和教育部创新团队项目(IRT13079)资助。

Effect of Biochar on Root Morphogenesis and Anatomical Structure of Rice Cultivated in Cold Region of Northeast China

ZHOU Jin-Song1,2,YAN Ping2,ZHANG Wei-Ming1,ZHENG Fu-Yu2,CHENG Xiao-Yi1,CHEN Wen-Fu1,*   

  1. 1Rice Institute of Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province / Northeast Key Laboratory of Rice Biology and Genetic Breeding, Ministry of Agriculture / Northern Key Laboratory of Super Rice Breeding, Ministry of Education, Shenyang 110866, China; 2 Wuchang Rice Institute, Heilongjiang Academy of Agricultural Sciences, Wuchang 150229, China
  • Received:2016-06-11 Revised:2016-09-18 Published:2017-01-12 Published online:2016-09-29
  • Contact: CHEN Wenfu,E-mail: wfchen5512@126.com
  • Supported by:

    This study was supported by the State Key Special Program of Soil Fertility Improvement and Cropping Innovation for High Yield with High Efficiency in Rice Cropping Areas (2016YFD0300904), Liaoning Province Major Science and Technology Platform for University (Biochar Engineering and Technical Research Center), Shenyang Special Program for Apply Basic Research Program (F16-205-1-38), Special Fund for Agro-scientific Research in the Public Interest Program of China (201303095) and Ministry of Education Program for Innovative Research Team (IRT13079).

摘要:

在黑龙江省早春水稻旱育苗背景下,研究稻田土壤育苗基质中添加生物炭对秧苗根系形态建成与解剖结构的影响,以明确生物炭在东北冷凉地区水稻生产上的应用潜力和价值。以东北稻田土壤为育苗基质,添加0、5.0%、10.0%、15.0%、20.0% (w/w)的生物炭,进行保护地旱育水稻秧苗。出苗后30 d,测定秧苗根系形态建成和解剖结构等性状,分析生物炭对水稻秧苗根系发育的影响。结果表明,在稻田土壤育苗基质中添加5.0%生物炭时,水稻秧苗根系长度、根系表面积和根系体积等明显增加;生物炭添加量为10.0%时,各项根系形态指标达到最高值;生物炭添加量超过10.0%时,根系形态指标下降。根长、根表面积和根体积增加的原因主要来自于细根增加。同时,添加5.0%生物炭时,根半径、根截面积、根表皮厚度、根皮层厚度、皮层腔面积、根导管数量及导管面积等性状指标也相应增加。生物炭添加量为5.0%~10.0%时,根解剖结构各项性状指标达到最大值。当生物炭添加量超过10.0%时,根系解剖结构性状指标也有下降趋势。根系增粗主要源于根表皮及皮层发育良好。在东北冷凉地区进行保护地水稻旱育苗,基质中添加适量生物炭(5.0%~10.0%)有利于秧苗根系的伸长及增粗,形成发达根系,提高秧苗素质。

关键词: 生物炭, 水稻, 根系形态, 解剖结构

Abstract:

To explore potential and practical application value of biochar in rice production in the cold region of Northeast China, we added 0-20.0% (w/w) biochar in rice nursery substrate of paddy soil and studied the root morphogenesis and anatomical structure of rice at 30 days after seed germination, The treatment of 5.0% biochar significantly increased the root length, root surface area and root volume, with the maximum value for all the root morphological indexes in the treatment of 10.0% biochar. When the biochar added more than 10.0%, the root morphological indexes started to decrease. It was indicated that the increase of root length, root surface area and root volume was the consequence of producing more fine roots. Meanwhile, when 5.0% biochar added in the rice nursery substrate, root epidermis thickness, cortex thickness, sclerenchyma tissue, number of vessels, sectional area of vessels, cortex cavity area, sectional area of whole root and root radius increased in comparison with those of control. In the treatment of 5.0%-10.0% biochar addition, all the indexes of anatomical structure of root reached the maximum. When the biochar added more than 10.0%, all the indexes of anatomical structure of root had a descending trend. It was revealed that the well-developed root epidermis and cortex were the main reason of promoting enlargement of roots when a moderate amount of biochar was added in the rice nursery substrate. Taken together, we conclude that the proper addition of 5.0%-10.0% (w/w) biochar is advantageous to the elongation, enlargement and formation of well-developed root system ,resulting in improved quality of rice seedlings in the dry rice-nursery of protected area when the paddy soil is used as the nursery substrate in the cold region of Northeast China.

Key words: Biochar, Rice (Oryza sativa L.), Root morphology, Anatomical structure

[1] 孙强, 张三元, 张俊国, 杨春刚. 东北水稻生产现状及对策. 北方水稻, 2010, 40(2): 72–74
Sun Q, Zhang S Y, Zhang J G, Yang C G. Current situation of rice production in northeast of China and countermeasures. North Rice, 2010, 40(2): 72–74 (in Chinese with English abstract)
[2] 陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势. 沈阳农业大学学报, 2006, 37: 801–805
Chen W F, Pan W B, Xu Z J. Current situation and trends in production of japonica rice in China. J Shenyang Agric Univ, 2006, 37: 801–805 (in Chinese with English abstract)
[3] 金颖. 近代水稻传入东北及其影响研究. 中国农史, 2010, (3): 35–41
Jin Y. A study on the rice spread and inpluence to Northeastern Region in Modern Times. Agric History China, 2010, (3): 35–41 (in Chinese with English abstract)
[4] 徐正进, 邵国军, 韩勇, 张学军, 全成哲, 潘国君, 陈温福. 东北三省水稻产量和品质及其与穗部性状关系的初步研究. 作物学报, 2006, 32: 1878–1883
Xu Z J, Shao G J, Han Y, Zhang X J, Quan C Z, Pan G J, Chen W F. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China. Acta Agron Sin, 2006, 32: 1878–1883 (in Chinese with English abstract)
[5] 原正市. 中国水稻旱育稀植栽培技术指南. 北京: 中国农业出版社, 1994. pp 5–35
Yuan Z S. The Operation Instruction of Cultivation Technique for Chinese Rice Breeding with Dry Seeded and Thinly Populated Cultivated Pattern. Peking: China Agriculture Press, 1994. pp 5–35 (in Chinese)
[6] 王松良, 林文雄. 我国水稻旱育稀植技术的发展和问题探讨. 中国稻米, 1999, 5(5): 12–14
Wang S L, Lin W X. Research on problems and developments of technical of dry stress seedling nursing in China. China Rice, 1999, 5(5): 12–14 (in Chinese)
[7] 刘华招. 水稻育苗基质研究进展. 现代化农业, 2012, (10): 30–31
Liu H Z. Research progress on seedling substrate of rice. Modern Agric, 2012, (10): 30–31 (in Chinese)
[8] 尹桂花. 东北地区水稻育苗新技术探讨. 黑龙江省农业科学, 2007, (1): 23–24
Yin G H. The new rice nursery technique investigation in northeast of China. Heilongjiang Agric Sci, 2007, (1): 23–24 (in Chinese with English abstract)
[9] 陈温福, 张伟明, 孟军, 徐正进. 生物炭应用技术研究. 中国工程科学, 2011, 13(2): 83–89
Chen W F, Zhang W M, Meng J, Xu Z J. Researches on biochar application technology. Eng Sci, 2011, 13(2): 83–89 (in Chinese)
[10] Tilly C, The art, science, and technology of charcoal production. Ind Eng Chem Res, 2003, 42: 1619–1640
[11] Lehmann J, Silva J P D, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 2003, 249: 343–357
[12] Whitman T, Lehmann J. Biochar—One way forward for soil carbon in offset mechanisms in Africa? Environ Sci Policy, 2009, 12: 1024–1027
[13] Gerard C, Zofia K, Stavros K, Kimon C, Örjan G. Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environ Sci Technol, 2004, 38: 3632–3640
[14] Asai H, Samson B K, Stephan H M, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T. Biochar amendment techniques for upland rice production in Northern Laos: Soil physical properties, leaf SPAD and grain yield. Field Crops Res, 2009, 111: 81–84
[15] Steiner C, Glaser B, Teixeira W G, Lehmann J, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci, 2008, 171: 893–899
[16] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fert Soils, 2002, 35: 219–230
[17] Kizito S, Wu S, Kirui W K, Ming L, Lu Q, Bah H, Dong R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ, 2015, 505: 102–112
[18] Lehmann J. Bioenergy in the black. Front Ecol Environ, 2007, 5: 381–387
[19] Steiner C, Teixeira W G, Lehmann J, Nehls T, Blum W E H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 2007, 291: 275–290
[20] Elad Y, David D R, Harel Y M, Borenshtein M, Kalifa H B, Silber A, Graber E R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 2010, 100: 913–921
[21] Pietikäinen J, Kiikkilä O, Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 2000, 89: 231–242
[22] Huang W K, Ji H L, Gheysen G, Debode J, Kyndt T. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biol, 2015, 15: 267 doi: 10.1186/s12870-015-0654-7
[23] Singh B P, Hatton B J, Balwant S, Cowie A L, Kathuria A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Quality, 2010, 39: 1224–1235
[24] 王耀锋, 刘玉学, 吕豪豪, 杨生茂. 水洗生物炭配施化肥对水稻产量及养分吸收的影响. 植物营养与肥料学报, 2015, 21: 1049–1055
Wang Y F, Liu Y X, Lü H H, Yang S M. Effect of washing biochar and chemical fertilizers on rice yield and nutrient uptake. J Plant Nutr Fert, 2015, 21: 1049–1055 (in Chinese with English abstract)
[25] 郑小龙. 减量施肥和生物质炭配施对水稻田面水水质和水稻产量的影响. 浙江农林大学博士学位论文, 浙江临安, 2014
Zheng X L. Effects of Reducing Nitrogen and Biomass Carbon Application on Water Quality in Field Surface Water and Rice Yields. PhD Dissertation of Zhejiang A & F University, Lin’an, China. 2014 (in Chinese with English abstract)
[26] Kim H S, Kim K R, Yang J E, Yong S O, Owens G, Nehls T, Wessolek G, Kim K H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 2016, 142: 153–159
[27] Chidumayo E N. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia. For Ecol Manage, 1994, 70: 353–357
[28] Yan G Z, Shima K, Fujiwara S, Chiba K. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition. J Jpn Soc Revegetation Technol, 2004, 30: 33–38
[29] Zwieten L V, Kimber S, Morris S, Chan K Y, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 2010, 327: 235–246
[30] 李正理. 植物制片技术(第2版). 北京: 科学出版社, 1987. pp 60–72
Li Z L. Plant Sectioning Technology, 2nd edn. Beijing: Science Press, 1987. pp 60–72 (in Chinese)
[31] 郑国閟. 生物显微技术(第2版). 北京: 高等教育出版社, 1993. pp 75–90
Zheng G B. Biology Microscopy Technique, 2nd edn. Beijing: Higher Education Press, 1993. pp 75–90 (in Chinese)
[32] Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant Cell Physiol, 2004, 45(suppl): 17
[33] 陈温福, 徐正进. 水稻超高产育种理论与方法. 北京: 科学出版社, 2008. pp 121–129
Chen W F, Xu Z J. The Theories and Methods of Rice Breeding for Super High Yield. Beijing: Science Press, 2008. pp 121–129 (in Chinese)
[34] 刘晓冰, 王光华, 金剑, 张秋英. 作物根际和产量生理研究. 北京:科学出版社, 2010. p 30
Liu X B, Wang G H, Jin J, Zhang Q Y. Physiological Research of Crop Root Rhizosphere and Yield. Beijing: Science Press, 2010. p 30 (in Chinese)
[35] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36–46
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36–46 (in Chinese with English abstract)
[36] Oguntunde P G, Abiodun B J, Ajayi A E, Giesen N V D. Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci, 2008, 171: 591–596
[37] 张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39: 1445–1451
Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron Sin, 2013, 39: 1445–1451 (in Chinese with English abstract)
[38] 张伟明. 生物炭的理化性质及其在作物生产上的应用. 沈阳农业大学博士学位论文, 辽宁沈阳, 2012
Zhang W M. Physical and Chemical Properties of Biochar and Its Application in Crop Production. PhD Dissertation of Shenyang Agricultural University, Shenyang, China, 2012 (in Chinese with English abstract)
[39] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46: 3324–3333
Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013, 46: 3324–3333 (in Chinese with English abstract)
[40] 李合生. 现代植物生理学. 高等教育出版社, 2012. pp 163–211
Li H S. Modern Plant Physiology. Hebei: Higher Education Press, 2012. pp 163–211
[41] Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Die Naturwissenschaften, 2001, 88: 37–41
[42] Deenik J L, Mcclellan A T, Uehara G, Deenik J L, McClellan A T, Uehara G. Biochar volatile matter content effects on plant growth and nitrogen and nitrogen transformations in a tropical soil. West Nutr Manage Conf, 2009, 8: 26–31

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!