欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 941-948.doi: 10.3724/SP.J.1006.2019.84146

• 研究简报 • 上一篇    下一篇

氮钾配施对油菜产量及氮素利用的影响

李静,闫金垚,胡文诗,李小坤,丛日环,任涛(),鲁剑巍   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室, 湖北武汉 430070
  • 收稿日期:2018-11-09 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 任涛
  • 作者简介:E-mail: ljing@webmail.hzau.edu.cn, Tel: 027-87288589
  • 基金资助:
    本研究由国家自然科学基金项目(31872173);国家现代农业产业技术体系建设专项(CARS-12);中央高校基本科研业务费专项基金(2662018PY077)资助

Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.)

Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN(),Jian-Wei LU   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2018-11-09 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Tao REN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31872173);the China Agriculture Research System(CARS-12);the Fundamental Research Funds for the Central Universities (2662018PY077).

摘要:

实际生产中氮钾肥投入不平衡严重限制了氮肥肥效及作物的产量潜力。为了探明不同施氮量下钾肥施用对油菜产量及氮素利用的影响, 于2016—2017年及2017—2018年在湖北省武穴市开展连续2年的田间试验, 采用氮钾两因素完全试验设计, 设氮0、90、180、270 kg N hm -2和钾0、60、120、180 kg K2O hm -2各4个水平。在油菜成熟期取样测定产量、地上部氮钾积累量以及氮肥利用率。结果表明, 在钾供应不足时(K0和K60), 冬油菜施用氮肥的平均增产率为113.7%, 而在钾供应充足的条件下(K120和K180), 施用氮肥的平均增产率高达172.9%; 与K0处理相比, K120处理冬油菜氮肥回收利用率平均提高了16.6%, 继续增施钾肥对不同施氮量下冬油菜氮肥回收利用率的进一步提高无显著影响; 达到区域平均产量时, 钾供应充足较低钾(K60)投入平均降低33.9%的氮肥用量。综上所述, 氮钾配施显著提高了冬油菜产量和氮肥利用率, 在冬油菜实际生产中除了重视氮肥施用外, 应增加钾肥投入, 通过优化氮钾肥配施比例可进一步提高油菜产量, 实现冬油菜高产和养分高效。

关键词: 冬油菜, 氮钾配施, 产量, 氮肥利用率

Abstract:

The imbalance inputs of nitrogen (N) and potassium (K) fertilizer in current agricultural production severely restricts fertilizer use efficiency and crop yield potential. In order to estimate the influence of K fertilizer application on rapeseed yield and N fertilizer use efficiency under different nitrogen application rates, field experiments using two-factor experimental design were conducted at Wuxue county, Hubei province in 2016/2017 and 2017/2018 winter oilseed rape growing seasons. Four levels of N and K fertilizer application rates were set up, which were 0, 90, 180, 270 kg N ha -1 and 0, 60, 120, 180 kg K2O ha -1, respectively. Seed yield, shoot N and K accumulation and N fertilizer use efficiency were measured at the harvest of winter oilseed rape. When K supply was insufficient (K0 and K60), the average increase rate of seed yield was 113.7%, while under sufficient K supplies (K120 and K180), the average seed yield increase rate was 172.9%. In contrast to the K0 treatment, the K120 treatment increased N fertilizer use efficiency by 16.6% on average; nevertheless, further increase K fertilizer application rate played minor role in the improvement of N fertilizer use efficiency. Considering the regional average rapeseed yield, adequate K supply could reduce the N fertilizer application rate with the average of 33.9% compared with insufficient K fertilization (K60). Consequently, the combined application of N and K fertilizers could significantly enhance rapeseed yield and N fertilizer use efficiency. In practices, besides paying more attention to N fertilizer application, K fertilizer input also should be strengthened. Optimizing N and K fertilizer application could be beneficial to further achieving higher seed yield and higher fertilizer use efficiency.

Key words: winter oilseed rape (Brassica napus L.), combined application of nitrogen and potassium, seed yield, nitrogen use efficiency

表1

不同氮肥和钾肥用量对2016-2017和2017-2018年油菜产量的影响"

处理
Treatment
年份 Year 平均
Average (kg hm-2)
2016/2017 2017/2018
N0 K0 833 c 750 b 791
K60 977 b 909 ab 943
K120 1051 ab 956 ab 1003
K180 1125 a 1088 a 1106
平均 Average 996 926 961
N90 K0 1220 c 1284 c 1252
K60 1618 b 1594 b 1606
K120 2038 a 1988 a 2013
K180 2116 a 2138 a 2127
平均 Average 1748 1751 1749
N180 K0 1904 c 1659 c 1782
K60 2590 b 2278 b 2434
K120 3038 a 2981 a 3009
K180 3366 a 3281 a 3323
平均 Average 2724 2550 2637
N270 K0 1720 c 1406 c 1563
K60 2781 b 2372 b 2576
K120 3320 a 3162 a 3241
K180 3550 a 3478 a 3514
平均 Average 2843 2605 2724
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 761.1**
钾肥 Potassium (K) 296.1**
年份 Year (Y) 15.9**
N×K 29.2**
N×Y 3.2*
K×Y 1.3ns
N×K×Y 0.5ns

表2

不同氮肥和钾肥用量对2016-2017和2017-2018年油菜籽产量构成因素的影响"

处理
Treatment
单位面积角果数
Number of pods per unit area (No. m-2)
平均
Average
角粒数
Seed number
(No. pod-1)
平均
Average
千粒重
1000 seed weight
(g)
平均Average
2016/2017 2017/2018 2016/2017 2017/2018 2016/2017 2017/2018
N0 K0 1245 b 1059 b 1152 24.7 a 24.4 b 24.5 3.3 a 2.9 a 3.1
K60 1444 ab 1160 b 1302 25.4 a 24.7 ab 25.0 3.2 a 3.1 a 3.2
K120 1575 a 1290 ab 1432 26.1 a 25.4 ab 25.8 3.1 a 3.1 a 3.1
K180 1679 a 1503 a 1591 25.8 a 25.8 a 25.8 3.1 a 3.1 a 3.1
平均 Average 1486 1253 1369 25.5 25.1 25.3 3.2 3.0 3.1
N90 K0 2981 c 2272 c 2626 24.1 b 23.4 b 23.8 3.2 a 2.9 a 3.1
K60 3408 bc 2742 b 3075 25.7 ab 26.3 ab 26.0 3.4 a 2.9 a 3.1
K120 3591 ab 3250 a 3421 25.1 ab 25.1 ab 25.1 3.2 a 2.9 a 3.1
K180 4114 a 3479 a 3796 26.3 a 26.6 a 26.4 3.1 a 2.9 a 3.0
平均 Average 3523 2936 3230 25.3 25.4 25.3 3.2 2.9 3.1
N180 K0 3649 c 2662 c 3156 24.3 c 22.7 b 23.5 3.2 b 3.0 a 3.1
K60 4508 b 3593 b 4051 26.3 b 26.3 a 26.3 3.4 ab 3.0 a 3.2
K120 4720 a 4838 a 4779 27.5 a 26.8 a 27.1 3.5 a 3.0 a 3.3
K180 4751 a 5024 a 4888 27.7 a 27.0 a 27.4 3.3 b 3.0 a 3.1
平均 Average 4407 4029 4218 26.5 25.7 26.1 3.4 3.0 3.2
N270 K0 3455 c 2151 d 2803 24.0 c 22.7 b 23.4 3.4 a 3.2 a 3.3
K60 4791 b 3626 c 4209 26.2 b 27.3 a 26.8 3.5 a 3.1 a 3.3
K120 5406 ab 5138 b 5272 27.5 ab 26.0 a 26.8 3.3 a 3.2 a 3.2
K180 5953 a 5710 a 5832 28.1 a 27.4 a 27.7 3.3 a 3.0 a 3.2
平均 Average 4901 4156 4529 26.4 25.9 26.2 3.4 3.1 3.3
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 491.6** 6.3** 9.6**
钾肥 Potassium (K) 119.2** 50.4** 2.9*
年份 Year (Y) 57.2** 4.9* 92.5**
N×K 14.9** 3.7** 1.0ns
N×Y 3.1* 0.9ns 2.9*
K×Y 6.9** 2.3ns 2.2ns
N×K×Y 1.7ns 0.7ns 1.7ns

图1

氮钾肥配施对2016-2017和2017-2018年收获期地上部氮钾积累量的影响 标以不同小写字母的柱值在相同年份同一施氮量下不同钾处理间差异达0.05显著水平; *表示P < 0.05, **表示P < 0.01。处理同表1。"

图2

氮钾肥配施对2016-2017和2017-2018年冬油菜氮素利用效率的影响 标以不同小写字母柱值在相同年份同一施氮量下不同钾处理间差异达0.05显著水平; *表示P < 0.05, **表示P < 0.01; ns表示无显著差异。处理同表1。"

图3

不同施钾量下油菜产量对氮肥的响应及与目标产量对应的最佳施氮量 图中虚线表示产量为2500 kg hm-2时的氮钾肥用量, 点划线表示产量为3000 kg hm-2时的氮钾肥用量; 黑色实心点为2016-2017年平均产量, 空心点为2017-2018年平均产量。处理同表1。"

[1] Mulvaney R L, Khan S A, Ellsworth T R . Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Quality, 2009,38:2295-2314.
doi: 10.2134/jeq2008.0527 pmid: 19875786
[2] West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M , MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014,345:325-328.
[3] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S . Enhanced nitrogen deposition over China. Nature, 2013,494:459-462.
[4] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[5] Zhang F S, Niu J F, Zhang W F, Chen X P, Li C J, Yuan L X, Xie J C . Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil, 2010,335:21-34.
doi: 10.1007/s11104-010-0323-4
[6] Regmi A P, Ladha J K, Pasuquin E, Pathak H, Hobbs P R, Shrestha L L, Gharti D B, Duveiller E . The role of potassium in sustaining yields in a long-term rice-wheat experiment in the Indo-Gangetic Plains of Nepal. Biol Fert Soils, 2002,36:240-247.
doi: 10.1007/s00374-002-0525-x
[7] Zörb C, Senbayram M, Peiter E . Potassium in agriculture-status and perspectives. J Plant Physiol, 2014,171:656-669.
doi: 10.1016/j.jplph.2013.08.008 pmid: 24140002
[8] Khan M Z, Muhammad S, Naeem M A, Akhtar E, Khalid M . Response of some wheat ( Triticum aestivum L.) varieties to foliar application of N & K under rainfed conditions. Pak J Bot, 2006,38:1027-1034.
[9] Jackson H . Evaluation of Nitrogen and Potassium Interactions in Corn. Graduate Theses and Dissertations of Iowa State University, America, 2018.
[10] Fischer R A, Byerlee D, Edmeades G O . Crop yields and global food security: will yield increase continue to feed the world? Eur Rev Agric Econ, 2014,158:191-192.
doi: 10.1093/ajae/aau121
[11] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[12] 李慧, 马常宝, 鲁剑巍, 李小坤, 任涛, 丛日环 . 中国不同区域油菜氮磷钾肥增产效果. 中国农业科学, 2013,46:1837-1847.
Li H, Ma C B, Lu J W, Li X K, Ren T, Cong R H . Increasing effect of N, P and K fertilizer on rapeseed in different regions of China. Sci Agric Sin, 2013,46:1837-1847 (in Chinese with English abstract).
[13] 徐华丽 . 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文, 湖北武汉, 2012.
Xu H L . Investigation on Fertilization and Effect of Formulated Fertilization of Winter Rapeseed in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[14] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[15] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森 , Roland B, Christian W. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002,35:1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W . Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002,35:1095-1103 (in Chinese with English abstract).
[16] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[17] 贾良良, 陈新平, 张福锁, 刘宏斌, 吴健繁 . 北京市冬小麦氮肥适宜用量评价方法的研究. 中国农业大学学报, 2001,6(3):67-73.
Jia L L, Chen X P, Zhang F S, Liu H B, Wu J F . Study of optimum N supplying rate in winter wheat in Beijing area. J China Agric Univ, 2001,6(3):67-73 (in Chinese with English abstract).
[18] 陈新平, 周金池, 王兴仁, 张福锁, 宝德俊, 贾晓红 . 小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. 土壤学报, 2000,37:346-354.
Chen X P, Zhou J C, Wang X R, Zhang F S, Bao D J, Jia X H . Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedol Sin, 2000,37:346-354 (in Chinese with English abstract).
[19] Wang W N, Lu J W, Ren T, Li X K, Su W, Lu M X . Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Res, 2012,137:37-48.
doi: 10.1016/j.fcr.2012.08.010
[20] Loué A . The interaction of potassium with other growth factors, particularly with other nutrients. IPI Res Topics, 1980,8:67-93.
[21] Milford G F J, Johnston A E . Potassium and nitrogen interactions in crops production. Nawozy I Nawozenie, 2009,34:143-162.
[22] Brennan R F , Bolland M D A. Influence of potassium and nitrogen fertilizer on yield, oil and protein concentration of canola ( Brassica napus L.) grain harvested in southwestern Australia. Aust J Exp Agric, 2007,47:976-983.
[23] Ahmad C, Jan A, Arif M, Jan M T, Shah H . Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. J Plant Nutr, 2011,34:2069-2082.
doi: 10.1080/01904167.2011.618569
[24] Amanullah, Hassan M , Malhi S S. Seed yield and yield components response of rape ( B. napus) versus mustard( B. juncea) to sulfur and potassium fertilizer application in northwest Pakistan. J Plant Nutr, 2011,34:1164-1174.
[25] Bruns H A, Ebellhar M W . Nutrient uptake of maize affected by nitrogen and potassium fertility in a humid subtropical environment. Commun Soil Sci Plant Anal, 2006,37:275-293.
doi: 10.1080/00103620500408829
[26] Duncan E G , Sullivan C A O,Roper M M, Palta J, Whisson K, Peoples M B . Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. J Plant Nutr Soil Sci, 2018,181:364-373.
doi: 10.1002/jpln.201700376
[27] Siebrecht S, Tischner R . Changes in the xylem exudate composition of poplar (Populus tremula × P. alba): dependent on the nitrogen and potassium supply. J Exp Bot, 1999,50:1797-1806.
[28] Delaire M, Mauget J C, Beaujard F . Evidence for a strong correlation between season-dependent nitrate and potassium uptake in two deciduous trees. Trees, 2014,28:769-776.
doi: 10.1007/s00468-014-0990-5
[29] Armengaud P, Sulpice R, Miller A J, Stitt M, Amtmann A, Gibon Y . Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol, 2009,150:772-785.
doi: 10.1104/pp.108.133629
[30] 张智, 丛日环, 鲁剑巍 . 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017,23:1494-1504.
Zhang Z, Cong R H, Lu J W . Potential analysis on winter oilseed rape production under reducing nitrogen input and increasing its efficiency in China. J Plant Nutr Fert, 2017,23:1494-1504 (in Chinese with English abstract).
[31] Ren T, Zou J, Lu J W, Chen F, Wu J S, Li X K . On-farm trials of optimal fertilizer recommendations for the maintenance of high seed yields in winter oilseed rape (Brassica napus L.) production (fertilizers and soil amendments). Soil Sci Plant Nutr, 2015,61:528-540.
doi: 10.1080/00380768.2014.1003964
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!