欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2638-2653.doi: 10.3724/SP.J.1006.2022.13053

• 耕作栽培·生理生化 • 上一篇    下一篇

种植方式与施氮对西北旱区饲草作物产量、品质和水分利用的影响

魏正业(), 张海星, 石薇, 常生华, 张程, 贾倩民(), 侯扶江   

  1. 兰州大学草地农业生态系统国家重点实验室 / 兰州大学农业农村部草牧业创新重点实验室 / 兰州大学草地农业教育部工程研究中心 / 兰州大学草地农业科技学院, 甘肃兰州 730020
  • 收稿日期:2021-09-08 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-31
  • 通讯作者: 贾倩民
  • 作者简介:第一作者联系方式: E-mail: weizhy20@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31901389);兰州大学中央高校基本科研业务费专项资金(lzujbky-2019-33);兰州大学“双一流”引导专项-队伍建设-科研启动费项目(561119204)

Effects of planting methods and nitrogen application on forage crop yield, quality and water use in arid area of northwest China

WEI Zheng-Ye(), ZHANG Hai-Xing, SHI Wei, CHANG Sheng-Hua, ZHANG Cheng, JIA Qian-Min(), HOU Fu-Jiang   

  1. State Key Laboratory of Grassland Agro-ecosystems / Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Grassland Industry, Ministry of Education / College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
  • Received:2021-09-08 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-31
  • Contact: JIA Qian-Min
  • Supported by:
    National Natural Science Foundation of China(31901389);Fundamental Research Funds for the Central Universities(lzujbky-2019-33);Scientific Research Start-up Cost of Team Construction Funds of “Double First-Rate” Guiding Project of Lanzhou University(561119204)

摘要:

间作和施氮是提高饲草作物产量和品质的重要措施, 然而, 在西北旱区青贮玉米-豆科作物间作系统的适宜施氮量尚不明确。本试验采用二因素随机区组设计, 设置3个种植方式(青贮玉米-拉巴豆间作, silage corn/Dolichos lablab intercropping, SL; 青贮玉米-秣食豆间作, silage corn/fodder soybean intercropping, SF; 青贮玉米单作, silage corn monoculture, S)和4种施氮水平(N1: 0 kg hm-2; N2: 120 kg hm-2; N3: 240 kg hm-2; N4: 360 kg hm-2)。分析种植方式和施氮水平对饲草作物产量、品质和水分利用的影响, 探索适宜西北旱区的玉-豆间作组合及施氮量。结果表明, 与S处理相比, 2019年和2020年SL处理的干草产量分别显著增加8.94%和8.68%, 水分利用效率分别显著增加12.28%和8.90%。间作较单作显著提高了饲草作物的粗蛋白和粗灰分含量, 显著降低了淀粉和中性洗涤纤维含量。施氮处理较不施氮显著提高了饲草作物的干草产量、粗蛋白、淀粉和粗脂肪含量, 显著降低了中性和酸性洗涤纤维含量, 而对粗灰分含量无显著影响。2019年N2、N3和N4的干草产量较N1分别显著增加30.30%、56.19%和53.95%, 2020年分别显著增加22.02%、60.54%和51.83%。N3和N4的WUE显著高于N1和N2, 而N3与N4无显著差异。所有处理中, SL-N3获得了最高的2年平均干草产量(33.10 t hm-2)、粗蛋白含量(10.01%)和水分利用效率(62.50 kg hm-2 mm-1)。综上所述, SL-N3是一种适合西北旱区青贮玉米生产的种植管理模式。

关键词: 施氮, 青贮玉米, 豆科作物, 产量, 营养品质

Abstract:

Intercropping and nitrogen application are important measures to improve the yield and quality of forage crops. However, the suitable nitrogen application rate of silage corn/legume intercropping system in the arid area of Northwest China is not clear. Three planting methods of silage corn/Dolichos lablab intercropping (SL), silage corn/fodder soybean intercropping (SF), and silage corn monoculture (S) were conducted in this experiment. Four nitrogen application levels of 0 kg hm-2 (N1), 120 kg hm-2 (N2), 240 kg hm-2 (N3), and 360 kg hm-2 (N4) were set under each planting mode. To explore the suitable jade bean intercropping combination and nitrogen application rate in the arid area of Northwest China, the effects of planting methods and nitrogen application levels on forage crop yield, quality and water use were analyzed. The results showed that compared with S treatment, the hay yield of SL treatment increased significantly by 8.94% and 8.68% in 2019 and 2020, and the water use efficiency increased significantly by 12.28% and 8.90%, respectively. Compared with monoculture, intercropping significantly increased the contents of crude protein and crude ash, and significantly reduced the contents of starch and neutral detergent fiber. Compared with no nitrogen application, nitrogen application significantly increased hay yield, crude protein, starch, and crude fat content, significantly reduced neutral and acid detergent fiber content, but there was no significant effect on crude ash content. Compared with N1, the hay yields of N2, N3, and N4 increased significantly by 30.30%, 56.19%, and 53.95% in 2019 and 22.02%, 60.54%, and 51.83% in 2020, respectively. WUE of N3 and N4 was significantly higher than that of N1 and N2, but there was no significant difference between N3 and N4. Among all treatments, SL-N3 obtained the highest two-year average hay yield (33.10 t hm-2), crude protein content (10.01%), and WUE (62.50 kg hm-2 mm-1). To sum up, SL-N3 is a management model suitable for silage corn production in arid areas of northwest China.

Key words: nitrogen application, silage corn, leguminous crops, yield, nutritional quality

图1

临泽试验站月平均降水及气温"

表1

2020年收获期不同处理下饲草作物的株高、茎粗和相对叶绿素含量"

种植方式Planting mode 施氮水平
Nitrogen level
玉米株高
Plant height of corn (cm)
玉米相对
叶绿素含量
SPAD of corn
玉米茎粗
Stem diameter of corn (mm)
豆科作物株高
Plant height of legume (cm)
豆科作物
相对叶绿素含量
SPAD of legume
青贮玉米-拉巴豆间作
SL
N1 199.99 bc 36.70 d 21.96 c 145.45 bc 39.80 b
N2 226.09 ab 38.95 cd 23.01 bc 159.29 b 40.69 b
N3 206.73 bc 41.25 bc 24.01 bc 150.29 b 42.40 b
N4 237.20 a 50.10 a 23.00 bc 199.52 a 47.50 a
青贮玉米-秣食豆间作
SF
N1 191.72 c 32.75 e 24.77 abc 116.33 d 12.50 c
N2 234.42 ab 34.85 de 26.23 ab 124.67 d 13.77 c
N3 209.90 bc 43.10 bc 26.77 ab 131.67 cd 16.50 c
N4 201.59 bc 47.20 ab 23.46 bc 119.67 d 13.03 c
青贮玉米单作
S
N1 206.17 bc 31.90 e 21.47 c
N2 234.77 ab 33.55 e 22.79 bc
N3 215.87 ab 35.15 d 24.02 bc
N4 242.21 a 46.30 ab 28.06 a
平均值
Average
SL 217.50 AB 41.75 A 23.00 B 163.64 A 42.60 A
SF 209.41 B 39.48 A 25.31 A 123.08 B 13.95 B
S 224.75 A 36.73 B 24.09 AB
N1 199.29 C 33.78 C 22.73 B 87.26 B 17.43 B
N2 231.76 A 35.78 C 24.01 AB 94.65 B 18.15 AB
N3 210.83 BC 39.83 B 24.93 A 93.99 B 19.63 A
N4 227.00 AB 47.87 A 24.84 A 106.40 A 20.18 A
因素显著性Significance of ANOVA P * ** ** ** **
N ** ** ** ** **
P×N ns ns ** ** **

图2

不同处理下饲草作物的干草产量 SL、SF和S分别表示青贮玉米-拉巴豆间作、青贮玉米-秣食豆间作和青贮玉米单作, N0、N1、N2和N3表示4个施氮水平0、120、240和360 kg hm-2, P、N和P×N分别表示种植方式、施氮水平、种植方式和施氮水平的交互作用, **表示差异极显著(P < 0.01), *表示差异显著(P < 0.05), ns表示差异不显著(P > 0.05), 不同小写字母表示处理间差异达0.05显著水平, 不同大写字母表示同一因素不同水平间差异达0.05显著水平。"

表2

不同处理下饲草作物的粗蛋白、淀粉和粗脂肪含量"

种植方式
Planting mode
施氮水平
Nitrogen
application level
粗蛋白Crude protein (%) 淀粉Starch (%) 粗脂肪Crude fat (%)
2019 2020 2019 2020 2019 2020
青贮玉米-拉巴豆间作
SL
N1 7.63±0.14 de 7.30±0.37 e 32.86±0.60 b 29.74±1.32 b 2.20±0.05 de 2.88±0.13 cd
N2 8.66±0.34 bcd 8.55±0.38 c 33.71±1.77 ab 31.20±1.46 b 2.54±0.15 abc 2.97±0.11 bc
N3 9.91±0.47 a 10.10±0.01 a 34.68±1.94 ab 32.54±0.86 b 2.76±0.15 ab 3.25±0.04 ab
N4 10.09±0.65 a 9.72±0.21 ab 34.09±2.94 ab 32.47±0.55 b 2.84±0.21 a 3.27±0.10 a
青贮玉米-秣食豆间作
SF
N1 7.43±0.41 ef 7.13±0.24 e 33.21±2.23 ab 29.74±1.34 b 2.12±0.14 de 3.03±0.14 abc
N2 8.19±0.34 cde 8.58±0.16 c 35.34±2.20 ab 30.04±1.42 b 2.37±0.12 bcd 3.02±0.08 abc
N3 9.06±0.42 abc 9.56±0.18 ab 35.96±2.07 ab 32.25±0.38 b 2.71±0.19 ab 3.14±0.08 abc
N4 9.52±0.33 ab 9.30±0.11 b 34.40±1.99 ab 32.64±1.30 b 2.87±0.17 a 3.30±0.10 a
青贮玉米单作
S
N1 6.36±0.37 f 6.06±0.13 f 36.98±3.06 ab 30.60±0.83 b 2.01±0.15 e 2.69±0.03 d
N2 7.32±0.46 ef 7.17±0.30 e 37.07±2.02 ab 31.54±1.84 b 2.49±0.18 abc 2.92±0.11 cd
N3 8.12±0.65 cde 8.06±0.20 cd 39.56±2.87 a 37.09±1.71 a 2.81±0.20 a 3.03±0.08 abc
N4 8.48±0.41 bcde 7.72±0.44 de 37.11±2.25 ab 38.34±2.45 a 2.93±0.16 a 3.09±0.16 abc
平均值
Average
SL 9.07±1.11 A 8.92±1.17 A 33.83±1.84 B 31.49±1.52 B 2.59±0.29 A 3.09±0.20 A
SF 8.55±0.90 B 8.64±1.00 B 34.72±2.11 B 31.17±1.69 B 2.52±0.33 A 3.12±0.15 A
S 7.57±0.95 C 7.25±0.83 C 37.68±2.48 A 34.40±3.84 A 2.56±0.40 A 2.93±0.18 B
N1 7.14±0.65 C 6.83±0.62 D 34.35±2.76 A 30.03±1.12 B 2.11±0.14 C 2.87±0.18 B
N2 8.06±0.68 B 8.10±0.74 C 35.37±2.27 A 30.93±1.53 B 2.47±0.15 B 2.97±0.10 B
N3 9.03±0.90 A 9.24±0.93 A 36.73±2.98 A 33.96±2.54 A 2.76±0.16 A 3.14±0.11 A
N4 9.36±0.82 A 8.91±0.95 B 35.20±2.55 A 34.49±3.22 A 2.88±0.16 A 3.22±0.15 A
因素显著性Significance of ANOVA P ** ** ** ** ns **
N ** ** ns ** ** **
P×N ns ns ns * ns ns

表3

不同处理下饲草作物的粗灰分、中性洗涤纤维和酸性洗涤纤维含量"

种植方式
Planting
mode
施氮水平
Nitrogen application level
粗灰分
Crude ash (%)
中性洗涤纤维
Neutral detergent fiber (%)
酸性洗涤纤维
Acid detergent fiber (%)
2019 2020 2019 2020 2019 2020
青贮玉米-拉巴豆间作
SL
N1 4.54±0.12 ab 5.02±0.42 a 41.27±1.87 ab 43.76±4.13 ab 26.21±1.05 a 28.15±2.92 a
N2 4.58±0.24 ab 4.98±0.34 a 39.70±2.37 ab 41.89±2.27 abc 26.05±1.69 a 25.62±1.61 abc
N3 4.74±0.30 a 5.04±0.04 a 36.77±1.59 ab 38.50±1.05 bc 23.66±1.37 ab 22.57±0.59 cd
N4 4.55±0.35 ab 4.86±0.25 a 36.01±1.63 b 36.86±0.46 c 22.93±1.01 ab 21.51±0.39 d
青贮玉米-秣食豆间作
SF
N1 4.28±0.28 abc 5.00±0.26 a 41.97±3.44 ab 43.24±3.66 ab 26.67±1.95 a 27.59±2.36 ab
N2 4.57±0.22 ab 4.89±0.11 a 40.33±2.72 ab 41.12±1.86 abc 26.61±1.52 a 25.48±1.17 abc
N3 4.55±0.27 ab 5.03±0.18 a 37.83±2.31 ab 39.85±1.21 bc 24.46±1.69 ab 23.49±0.74 cd
N4 4.59±0.27 ab 4.72±0.09 a 37.35±1.36 ab 38.68±0.18 bc 23.38±1.14 ab 22.04±0.01 cd
青贮玉米单作S N1 3.70±0.19 c 4.53±0.08 a 43.27±3.35 a 46.06±1.33 a 26.20±1.55 a 27.07±0.83 ab
N2 3.86±0.23 bc 4.59±0.14 a 41.74±2.27 ab 44.23±1.05 ab 25.53±1.48 ab 24.61±0.47 abcd
N3 4.13±0.30 abc 4.61±0.01 a 39.83±2.29 ab 42.20±1.36 abc 23.19±1.45 ab 24.22±0.26 bcd
N4 4.06±0.20 abc 4.50±0.19 a 37.64±1.27 ab 39.58±1.62 bc 21.92±0.93 b 21.97±0.54 cd
平均值
Average
SL 4.60±0.24 A 4.97±0.26 A 38.44±2.76 A 40.25±3.51 B 24.71±1.87 A 24.46±3.09 A
SF 4.49±0.26 A 4.91±0.20 A 39.37±2.94 A 40.72±2.54 B 25.28±2.01 A 24.65±2.48 A
M 3.94±0.27 B 4.56±0.11 B 40.62±3.01 A 43.02±2.77 A 24.21±2.15 A 24.47±1.95 A
N1 4.17±0.42 A 4.85±0.35 A 42.17±2.72 A 44.35±3.12 A 26.36±1.37 A 27.60±1.98 A
N2 4.34±0.41 A 4.82±0.26 A 40.59±2.31 AB 42.41±2.10 AB 26.06±1.43 A 25.24±1.13 B
N3 4.47±0.37 A 4.89±0.23 A 38.14±2.26 BC 40.18±1.93 BC 23.77±1.42 B 23.43±0.87 C
N4 4.40±0.35 A 4.69±0.22 A 37.00±1.45 C 38.37±1.47 C 22.75±1.10 B 21.84±0.42 D
因素显著性Significance of ANOVA P ** ** ns ** ns ns
N ns ns ** ** ** **
P×N ns ns ns ns ns ns

图3

不同处理下饲草作物的相对饲用价值 处理同图2。**表示差异极显著(P < 0.01), *表示差异显著(P < 0.05), ns表示差异不显著(P > 0.05), 不同小写字母表示处理间差异达0.05显著水平, 不同大写字母表示同一因素不同水平间差异达0.05显著水平。"

表4

不同处理下的土壤贮水量"

种植方式Intercropping mode 施氮水平
Nitrogen application level
播种前Before sowing (mm) 收获期Harvest period (mm)
2019 2020 2019 2020
青贮玉米-拉巴豆
间作
SL
N1 367.57±16.38 a 354.10±11.18 a 352.78±17.80 a 382.34±9.08 a
N2 361.47±19.73 a 339.31±15.40 a 328.73±16.25 ab 362.52±6.08 a
N3 359.90±24.87 a 329.57±18.22 a 308.90±16.48 ab 369.97±7.00 a
N4 358.82±26.26 a 334.92±20.61 a 307.20±16.60 ab 386.20±9.80 a
青贮玉米-秣食豆
间作
SF
N1 368.92±19.33 a 353.30±22.41 a 353.97±23.82 a 371.20±23.81 a
N2 369.82±21.82 a 347.79±23.72 a 346.40±20.51 ab 361.32±4.94 a
N3 367.30±22.04 a 330.05±24.09 a 312.45±17.41 ab 358.18±1.98 a
N4 373.57±25.27 a 348.62±25.50 a 310.74±16.13 ab 378.09±1.99 a
青贮玉米单作
S
N1 368.92±25.34 a 349.18±17.45 a 341.23±18.90 ab 381.20±20.65 a
N2 369.82±28.09 a 341.51±25.56 a 319.66±17.34 ab 375.59±3.60 a
N3 368.98±28.62 a 327.55±20.67 a 303.18±20.26 ab 368.61±4.48 a
N4 372.05±19.39 a 343.58±20.40 a 296.25±19.47 b 376.65±9.51 a
平均值
Average
SL 361.94±19.23 A 339.47±17.15 A 324.40±24.00 A 375.26±12.09 A
SF 369.90±19.10 A 344.94±22.42 A 330.89±26.39 A 367.20±13.32 A
S 369.94±21.89 A 340.45±19.92 A 315.08±24.31 A 375.51±11.05 A
N1 368.47±17.93 A 352.19±15.43 A 349.33±18.64 A 378.25±17.24 AB
N2 367.03±20.76 A 342.87±19.44 A 331.60±19.62 A 366.48±8.10 B
N3 365.40±22.32 A 329.06±18.34 A 308.18±16.21 B 365.59±7.03 B
N4 368.15±21.81 A 342.37±20.22 A 304.73±16.48 B 380.31±8.22 A
因素显著性Significance of ANOVA P ns ns ns ns
N ns ns ** **
P×N ns ns ns ns

表5

不同处理下的土壤蒸散量和水分利用效率"

种植方式Intercropping mode 施氮水平
Nitrogen application level
土壤蒸散量ET (mm) 水分利用效率WUE (kg hm-2 mm-1)
2019 2020 2019 2020
青贮玉米-拉巴豆
间作
SL
N1 553.89±17.45 a 496.10±11.95 a 40.28±1.62 cd 40.16±1.07 de
N2 571.83±37.35 a 494.18±25.51 a 49.97±3.09 ab 48.59±2.40 cd
N3 590.10±28.06 a 477.00±25.21 a 57.82±4.05 a 67.23±4.12 a
N4 590.71±38.14 a 466.12±34.60 a 55.99±3.19 a 65.81±4.75 a
青贮玉米-秣食豆
间作
SF
N1 554.06±24.36 a 499.50±33.93 a 37.13±2.16 cd 38.35±2.10 e
N2 562.51±28.71 a 503.87±18.42 a 49.36±2.51 ab 46.52±2.81 de
N3 593.96±36.26 a 489.28±34.42 a 56.25±3.29 a 64.54±4.62 ab
N4 601.93±43.02 a 487.93±37.69 a 55.11±3.57 a 61.15±3.89 ab
青贮玉米单作
S
N1 566.79±28.15 a 485.38±11.30 a 35.79±2.11 d 38.56±2.58 e
N2 589.26±38.78 a 483.32±29.86 a 44.07±3.24 bc 47.72±3.57 cd
N3 604.90±47.31 a 476.33±32.07 a 51.48±3.81 ab 61.17±4.03 ab
N4 614.90±39.55 a 484.34±30.80 a 50.42±3.30 ab 56.23±3.01 bc
种植方式Intercropping mode 施氮水平
Nitrogen application level
土壤蒸散量ET (mm) 水分利用效率WUE (kg hm-2 mm-1)
2019 2020 2019 2020
平均值
Average
SL 576.64±31.10 A 483.35±25.41 A 51.02±7.62 A 55.45±12.34 A
SF 578.12±35.79 A 495.14±28.18 A 49.46±8.31 A 52.64±11.54 AB
S 593.96±38.32 A 482.34±23.63 A 45.44±7.07 B 50.92±9.43 B
N1 558.25±21.53 B 493.66±19.90 A 37.73±2.63 C 39.02±1.95 C
N2 574.54±32.70 AB 493.79±23.44 A 47.80±3.81 B 47.61±2.72 B
N3 596.32±33.60 AB 480.87±27.42 A 55.18±4.31 A 64.31±4.53 A
N4 602.52±36.43 A 479.46±31.53 A 53.84±3.90 A 61.06±5.38 A
因素显著性
Significance of ANOVA
P ns ns ** *
N * ns ** **
P×N ns ns ns ns

图4

干草产量与施氮量的关系 处理同图2。"

图5

粗蛋白含量与施氮量的关系 处理同图2。"

图6

不同种植模式下水分利用效率与施氮量关系 处理同图2。"

[1] 任继周, 李发弟, 曹建民, 李秉龙, 胥刚, 唐增. 我国牛羊肉产业的发展现状、挑战与出路. 中国工程科学, 2019, 21(5): 67-73.
Ren J Z, Li F D, Cao J M, Li B L, Xu G, Tang Z. Development status, challenges and solutions of China’s beef and mutton industry. Strat Stud CAE, 2019, 21(5): 67-73. (in Chinese with English abstract)
[2] 孙雪丽, 李秋凤, 刘英财, 曹玉凤, 王增林, 李艺, 赵洋洋, 葛瀚聪, 刘桃桃, 赵立新. 全株青贮玉米对西门塔尔杂交牛生产性能、表观消化率及血液生化指标的影响. 草业学报, 2018, 27(9): 201-209.
Sun X L, Li Q F, Liu Y C, Cao Y F, Wang Z L, Li Y, Zhao Y Y, Ge h C, Liu T T, Zhao L X. Effects of whole plant silage corn on production performance, digestibility and blood biochemical parameters in Simmental crossbred bulls. Acta Pratac Sin, 2018, 27(9): 201-209. (in Chinese with English abstract)
[3] 牛巧龙, 曹高燚, 杜锦, 苏东伟, 万鹏, 田秀平. 施氮量对玉米产量及叶片部分酶活性的影响. 华北农学报, 2017, 32(1): 187-192.
Niu Q L, Cao G Y, Du J, Su D W, Wan P, Tian X P. Effects of nitrogen application rate on maize yield and leaf enzyme activity. Acta Agric Boreali-Sin, 2017, 32(1): 187-192. (in Chinese with English abstract)
[4] Hu F L, Tan, Y, Yu A Z, Zhao C, Fan Z L, Yin W, Chai Q, Coulter J A, Cao W D. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas. Eur J Agron, 2020, 119: 126117.
[5] 连彩云, 马忠明. 北方平原区春玉米化学氮肥投入阈值. 西北农业学报, 2016, 25: 9-15.
Lian C Y, Ma Z M. Input threshold of chemical nitrogen fertilizer for spring maize in northern plain. Acta Agric Boreali-Occident Sin, 2016, 25: 9-15. (in Chinese with English abstract)
[6] 李强, 马晓君, 豆攀, 程秋博, 余东海, 袁继超, 孔凡磊. 不同生态条件下氮肥对玉米氮素吸收利用及产量的影响. 华北农学报, 2017, 32(1): 156-164.
Li Q, Ma X J, Dou P, Cheng Q B, Yu D H, Yuan J C, Kong F L. Effects of nitrogen fertilizer on nitrogen absorption, utilization and yield of Maize under different ecological conditions. Acta Agric Boreali-Sin, 2017, 32(1): 156-164. (in Chinese with English abstract)
[7] 李婧, 李玲玲, 张立健, 陈亮亮, 谢军红. 氮肥用量对粮饲兼用玉米产量和饲用品质形成的影响. 草业科学, 2015, 32: 442-449.
Li J, Li L L, Zhang L J, Chen L L, Xie J H. Effects of nitrogen application on yield and forage quality of grain and forage maize. Pratac Sci, 2015, 32: 442-449. (in Chinese with English abstract)
[8] 闵迪, 王增红, 李援农, 张舵. 不同灌水和施氮水平对河西春玉米水氮利用效率和经济效益的影响. 干旱地区农业研究, 2020, 38(5): 153-160.
Min D, Wang Z H, Li Y N, Zhang D. Effects of different irrigation and nitrogen application levels on the yield and water and nitrogen use efficiency of spring maize. Agric Res Arid Areas, 2020, 38(5): 153-160. (in Chinese with English abstract)
[9] Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Li S K. How to increase maize production without extra nitrogen input. Resour Conserv Recycl, 2020, 160: 104913.
[10] Dal Molin S J, Ernani P R, Gerber J M. Soil acidification and nitrogen release following application of nitrogen fertilizers. Commun Soil Sci Plant Anal, 2020, 51: 2551-2558.
doi: 10.1080/00103624.2020.1845347
[11] 杜金丽. 氮肥施用对地下水污染的影响与治理策略研究. 环境科学与管理, 2019, 44(8): 22-27.
Du J L. Effects of nitrogen fertilizer application on groundwater pollution and analysis of control strategies. Environ Sci Manage, 2019, 44(8): 22-27. (in Chinese with English abstract)
[12] Zhang J T, Tian H Q, Shi H, Zhang J F, Wang X K, Pan S F, Yang J. Increased greenhouse gas emission intensity of major croplands in China: implications for food security and climate change mitigation. Global Change Biol, 2020, 26: 6116-6133.
doi: 10.1111/gcb.15290
[13] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[14] Jamont M, Piva G, Fustec J. Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter? Plant Soil, 2013, 371: 641-653.
doi: 10.1007/s11104-013-1712-2
[15] Xu Z, Li C J, Zhang C C, Yu Y, van der Werf W, Zhang F S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Res, 2020, 246: 107661.
[16] Du Q, Zhou L, Chen P, Liu X M, Song C, Yang F, Wang X C, Liu W G, Sun X, Du J B, Liu J, Shu K, Yang W Y, Yong T W. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. Crop J, 2020, 8: 140-152.
doi: 10.1016/j.cj.2019.06.010
[17] 朱元刚, 赵健皓, 肖岩岩, 刘慧, 戴忠民. 玉米-大豆间作条件下氮素高效利用的研究进展. 安徽农学通报, 2020, 26(22): 95-97.
Zhu Y G, Zhao J H, Xiao Y Y, Liu H, Dai Z M. Research progress of high nitrogen utilization efficiency under corn and soybean intercropping. Anhui Agric Sci Bull, 2020, 26(22): 95-97. (in Chinese with English abstract)
[18] Fischer J, Bohm H, Hess J. Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur J Agron, 2020, 112: 125947.
[19] 瓮巧云, 黄新军, 许翰林, 刘瑶, 袁晓峰, 马海莲, 袁进成, 刘颖慧. 玉米/大豆间作方式对青贮玉米产量、品质及土壤营养、根际微生物的影响. 核农学报, 2021, 35: 462-470.
doi: 10.11869/j.issn.100-8551.2021.02.0462
Weng Q Y, Huang X J, Xu H L, Liu Y, Yuan X F, Ma H L, Yuan J C, Liu Y H. Effects of corn/soybean intercropping on silage corn yield, quality, soil nutrition and rhizosphere microorganisms. J Nucl Agric, 2021, 35: 462-470 (in Chinese with English abstract).
[20] 田应学, 马培杰, 李亚娇, 吴佳海, 牟琼, 熊文康, 张忠贵, 韩永芬. 青贮玉米与拉巴豆套种对青贮玉米品质及产量的影响. 草业科学, 2019, 36: 1457-1465.
Tian Y X, Ma P J, Li Y J, Wu J H, Mou Q, Xiong W K, Zhang Z G, Han Y F. Effects of Interplanting silage corn and Dolichos lablab on the quality and yield of silage corn. Pratac Sci, 2019, 36: 1457-1465. (in Chinese with English abstract)
[21] 朱淑娟, 孙涛, 王方琳, 马剑平, 严子柱. 甘肃河西地区发展戈壁农业的现实依据和实现途径. 安徽农业科学, 2021, 49: 240-243.
Zhu S J, Sun T, Wang F L, Ma J P, Yan Z Z. The realistic basis and way of developing gobi agriculture in Hexi area of Gansu province. Anhui Agric Sci, 2021, 49: 240-243. (in Chinese with English abstract)
[22] 安颖蔚, 史书强, 冯良山, 张鹏. 玉米/大豆间作提高农田生产力和水分利用效率研究. 园艺与种苗, 2016, (9): 80-83.
An Y W, Shi S Q, Feng L S, Zhang P. Productivity enhancement a water use efficiency of maize-soybean intercropping. Hortic Seed, 2016, (9): 80-83 (in Chinese with English abstract)
[23] 张向前, 黄国勤, 卞新民, 江学海, 赵其国. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响. 生态学报, 2012, 32: 7082-7090.
Zhang X Q, Huang G Q, Bian X M, Jiang X H, Zhao Q G. Effects of intercropping on maize quality, yield, soil microbial quantity and enzyme activity. Acta Ecol Sin, 2012, 32: 7082-7090. (in Chinese with English abstract)
[24] 王雪蓉, 张润芝, 李淑敏, 许宁, 牟尧, 张春怡. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟. 中国生态农业学报, 2019, 27: 1354-1363.
Wang X R, Zhang R Z, Li S M, Xu N, Mou Y, Zhang C Y. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels. Chin J Eco-Agric, 2019, 27: 1354-1363. (in Chinese with English abstract)
[25] 李晶, 李伟忠, 吉彪, 陈龙涛, 魏湜, 冯淑华. 混播方式对青贮玉米产量和饲用品质的影响. 作物杂志, 2010, (3): 100-103.
Li J, Li W Z, Ji B, Chen L T, Wei S, Feng S H. Effect of mixed-planting mode on silage maize yield and forage quality. Crops, 2010, (3): 100-103. (in Chinese with English abstract)
[26] 赵海明, 游永亮, 武瑞鑫, 翟兰菊, 宋凤格, 李源. 种植密度和间作豆科牧草对青贮玉米生产性能的影响. 草学, 2020, (5): 25-31.
Zhao H M, You Y L, Wu R X, Zhai L J, Song F G, Li Y. Effects of planting density and intercropping leguminous forages on the production performance of silage corn. J Grassland Forage Sci, 2020, (5): 25-31. (in Chinese with English abstract)
[27] 李亚娇, 马培杰, 吴佳海, 牟琼, 覃涛英, 王晓强, 马宁, 张蓉, 李德芳, 朗永祥, 吴有松, 田应学, 韩永芬. 不同品种青贮玉米与拉巴豆套种对青贮玉米农艺性状及产量的影响. 草业学报, 2019, 28(9): 209-216.
Li Y J, Ma P J, Wu J H, Mou Q, Qin T Y, Wang X Q, Ma N, Zhang R, Li D F, Lang Y X, Wu Y S, Tian Y X, Han Y F. Effects of interplanting different varieties of silage corn and dolichos lablab on agronomic characters and yield of silage corn. Acta Pratac Sin, 2019, 28(9): 209-216 (in Chinese with English abstract).
[28] Wu Y, Jia Z K, Ren X L, Zhang Y, Chen X, Bing H Y, Zhang P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agric Water Manage, 2015, 158: 1-9.
doi: 10.1016/j.agwat.2015.03.021
[29] Huang Y L, Chen L D, Fu B J, Huang Z L, Gong J. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agric Water Manage, 2004, 72: 209-222.
doi: 10.1016/j.agwat.2004.09.012
[30] 刘景辉, 曾昭海, 焦立新, 胡跃高, 王莹, 李海. 不同青贮玉米品种与紫花苜蓿的间作效应. 作物学报, 2006, 32: 125-130.
Liu J H, Zeng Z H, Jiao L X, Hu Y G, Wang Y, Li H. Intercropping Effects of different silage maize varieties and alfalfa. Acta Agron Sin, 2006, 32: 125-130. (in Chinese with English abstract)
[31] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978-1987.
doi: 10.3724/SP.J.1006.2021.04226
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978-1987. (in Chinese with English abstract)
[32] 连露, 胡国富, 李冰, 崔国文, 冀国旭, 阎南南. 青贮玉米种植密度及与秣食豆混播比例对青贮品质的影响. 草地学报, 2017, 25: 178-183.
Lian L, Hu G F, Li B, Cui G W, Ji G X, Yan N N. Effects of planting density and mixed sowing ratio of silage corn and fodder soybean beans on silage quality. Acta Agrest Sin, 2017, 25: 178-183. (in Chinese with English abstract)
[33] 张海星, 常生华, 贾倩民, 周大梁, 张程, 刘永杰, 李红, 侯扶江. 禾豆间作与施氮对河西地区青贮玉米产量及水氮利用的影响. 中国土壤与肥料, 2021, (3): 51-62.
Zhang H X, Chang S H, Jia Q M, Zhou D L, Zhang C, Liu Y J, Li H, Hou F J. Effects of gramineae/legume intercropping and nitrogen application on yield, quality, water and nitrogen utilization of forage crops in Hexi region. Soils Fert Sci China, 2021, (3): 51-62. (in Chinese with English abstract)
[34] 王俊, 隋标, 王鸿斌, 赵兴敏, 赵兰坡. 吉林省玉米带玉米与大豆不同间作方式对作物产量及水分利用率的影响. 吉林农业大学学报, 2021, 43: 22-27.
Wang J, Sui B, Wang H B, Zhao X M, Zhao L P. Effects of different corn and soybean intercropping modes on crop yield and water use efficiency in Jilin corn belt. J Jilin Agric Univ, 2021, 43: 22-27. (in Chinese with English abstract)
[35] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50: 3702-3713.
Gao Y L, Sun Z X, Bai W, Feng L S, Yang N, Cai Q, Feng C, Zhang Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2017, 50: 3702-3713. (in Chinese with English abstract)
[36] 张凤云, 吴普特, 赵西宁, 成雪峰. 间套作提高农田水分利用效率的节水机理. 应用生态学报, 2012, 23: 1400-1406.
Zhang F Y, Wu P T, Zhao X N, Cheng X F. Water-saving mechanisms of intercropping system in improving cropland water use efficiency. Chin J Appl Ecol, 2012, 23: 1400-1406. (in Chinese with English abstract)
[37] 胡春花, 张吉贞, 孟卫东, 林力, 肖云. 不同栽培措施对青贮玉米产量和营养品质的影响. 热带作物学报, 2015, 36: 847-853.
Hu C H, Zhang J Z, Meng W D, Lin L, Xiao Y. Effects of different cultivation measures on silage maize yield and nutrition quality. J Trop Crops, 2015, 36: 847-853. (in Chinese with English abstract)
[38] 兰宏亮. 氮肥运筹对夏播农大108青贮产量的影响. 农业科技通讯, 2017, (9): 53-55.
Lan H L. Effect of nitrogen management on silage yield of summer sowing Nongda 108. Bull Agric Sci Technol, 2017, (9): 53-55. (in Chinese)
[39] 陈远学, 陈曦, 陈新平, 罗永, 牟勇, 吕世华, 徐开未. 不同施氮对饲草玉米产量品质及养分吸收的影响. 草业学报, 2014, 23(3): 255-261.
Chen Y X, Chen X, Chen X P, Luo Y, Mou Y, Lyu S H, Xu K W. Effects of different nitrogen application on yield, quality and nutrient absorption of forage maize. Acta Pratacult Sin, 2014, 23(3): 255-261. (in Chinese with English abstract)
[40] Jia Q M, Yang L Y, An H Y, Dong S, Chang S H, Zhang C, Liu Y J, Hou F J. Nitrogen fertilization and planting models regulate maize productivity, nitrate and root distributions in semi-arid regions. Soil Tillage Res, 2020, 200: 104636.
[41] 宋晋辉, 赵祥, 高运青, 李龙江, 王宏伟. 施氮量对青贮玉米产量和品质的影响. 江苏农业科学, 2012, 40(5): 155-156.
Song J H, Zhao X, Gao Y Q, Li L J, Wang H W. Effect of nitrogen application rate on Yield and quality of silage corn. Jiangsu Agric Sci, 2012, 40(5): 155-156 (in Chinese with English abstract).
[42] 王晨光, 赵美娟, 裴文东, 王国兴, 张宏军, 雷格丽, 张仁和. 施氮量对粮饲兼用玉米子粒产量和饲用品质的影响. 玉米科学, 2020, 28(6): 148-153.
Wang C G, Zhao M J, Pei W D, Wang G X, Zhang H F, Lei G L, Zhang R H, Effects of nitrogen rates on grain yield and forage quality of dual-purpose maize. J Maize Sci, 2020, 28(6): 148-153. (in Chinese with English abstract)
[43] 白琪林, 陈绍江, 戴景瑞. 我国常用玉米自交系秸秆品质性状及其相关分析. 作物学报, 2007, 33: 1777-1781.
Bai Q L, Chen S J, Dai J R. Stalk quality traits and their correlations of maize inbred lines in China. Acta Agron Sin, 2007, 33: 1777-1781. (in Chinese with English abstract)
[44] 张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019, 25: 579-590.
Zhang P L, Guo T T, Liu X W, Li S T, Zeng J, Tan X L, Dong B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. J Plant Nutr Fert, 2019, 25: 579-590. (in Chinese with English abstract)
[45] 王久龙, 王振华, 李文昊, 裴磊, 赵波, 扁青永, 朱延凯. 施氮量对复播青贮玉米光合特性和产量的影响. 干旱地区农业研究, 2017, 35(5): 250-255.
Wang J L, Wang Z H, Li W H, Pei L, Zhao B, Bian Q Y, Zhu Y K. Effects of nitrogen application rate on photosynthetic characteristics and yield of silage maize. Agric Res Arid Areas, 2017, 35(5): 250-255. (in Chinese with English abstract)
[46] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 不同施肥方式对东北春玉米农田土壤水热特征的影响. 水土保持学报, 2015, 29(4): 195-200.
Gao H J, Zhu P, Peng C, Zhang X Z, Li Q, Zhang W J. Effects of different fertilization methods on soil moisture and temperature characteristics of Spring maize field in northeast China. J Soil Water Conserv, 2015, 29(4): 195-200. (in Chinese with English abstract)
[47] 刘庚山, 郭安红, 安顺清, 林日暖, 任三学. 开发利用土壤深层水资源的一种有效途径"以肥调水"的大田试验研究. 自然资源学报, 2002, 17: 423-429.
Liu G S, Guo A H, An S Q, Lin R N, Ren S X. Field experimental study on “regulating water with fertilizer”, an effective way to develop and utilize deep soil water resources. J Nat Res, 2002, 17: 423-429. (in Chinese with English abstract)
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[3] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[4] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[5] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[6] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[7] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[8] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[11] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[12] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[13] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[14] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[15] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[2] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .
[3] 尹静;王广金;张宏纪;孙岩;刁艳玲;黄景华;郭强;肖佳雷;马凤鸣;孙光祖. 小麦突变体D51抗秆锈性遗传分析及其抗性基因SSR标记[J]. 作物学报, 2007, 33(08): 1262 -1266 .
[4] 李浩;张平平;查向东;夏先春;何中虎. 优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离[J]. 作物学报, 2007, 33(10): 1644 -1653 .
[5] 李余生;朱镇;张亚东;赵凌;王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J]. 作物学报, 2008, 34(10): 1728 -1733 .
[6] 李金才;魏凤珍;王成雨;尹钧. 孕穗期土壤渍水逆境对冬小麦根系衰老的影响[J]. 作物学报, 2006, 32(09): 1355 -1360 .
[7] 郭再华;贺立源;徐才国;张启发. 水稻耐低磷种质资源的筛选、鉴定指标[J]. 作物学报, 2005, 31(01): 65 -69 .
[8] 林瑞余;陈鸿飞;邓家耀;梁义元;梁康迳;林文雄. 不同栽培模式早稻-再生稻的能量积累与热值分析[J]. 作物学报, 2007, 33(11): 1794 -1801 .
[9] 郝志;田纪春;姜小苓. 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J]. 作物学报, 2007, 33(11): 1834 -1839 .
[10] 王云飞;赵法茂;李天骄;鞠倩;王宪泽. 小麦籽粒灌浆过程中淀粉去分支酶的类型、活性及其纯化[J]. 作物学报, 2007, 33(11): 1840 -1844 .