欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2866-2878.doi: 10.3724/SP.J.1006.2022.14212

• 耕作栽培·生理生化 • 上一篇    下一篇

单粒精播对中、高产旱地花生群体质量及养分利用的影响

王建国1,2(), 耿耘1, 杨佃卿3, 郭峰1,2, 杨莎1,2, 李新国1,2, 唐朝辉1,2, 张佳蕾1,2,*(), 万书波1,2,*()   

  1. 1山东省农业科学院农作物种质资源研究所, 山东济南 250100
    2农业农村部华东地区作物栽培科学观测实验站, 山东东营 257000
    3莒南县花生产业发展办公室, 山东临沂 276600
  • 收稿日期:2021-11-15 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-03-25
  • 通讯作者: 张佳蕾,万书波
  • 作者简介:第一作者联系方式: 王建国, E-mail: wang_jianguo2020@163.com第一联系人:** 同等贡献。
  • 基金资助:
    本研究由国家重点研发计划项目“花生优质轻简高效栽培技术集成与示范”(2020YFD1000905);山东省自然科学基金面上项目(ZR2020MC094);山东省中央引导地方科技发展资金(YDZX20203700001861)

Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands

WANG Jian-Guo1,2(), GENG Yun1, YANG Dian-Qing3, GUO Feng1,2, YANG Sha1,2, LI Xin-Guo1,2, TANG Zhao-Hui1,2, ZHANG Jia-Lei1,2,*(), WAN Shu-Bo1,2,*()   

  1. 1Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Dongying 257000, Shandong, China
    3Office of Peanut Industry Development of Junan, Linyi 276600, Shandong, China
  • Received:2021-11-15 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-03-25
  • Contact: ZHANG Jia-Lei,WAN Shu-Bo
  • Supported by:
    The National Key Research and Development Program of China “Integration and Demonstration of Peanut High Quality, Light, Simple and Efficient Cultivation Technology”(2020YFD1000905);The General Project of Shandong Natural Science Foundation(ZR2020MC094);The Funds for Guiding Local Scientific and Technological Development by the Central Government of Shandong Province(YDZX20203700001861)

摘要:

通过分析中、高产旱地花生不同单粒精播种植密度下个体和群体质量、养分吸收等方面的差异, 研究单粒精播增产机制, 以确定中、高产旱地适宜的单粒精播密度, 为花生高产高效栽培提供理论依据。2018年和2019年在山东平度(PD)选取高产旱地、济阳(JY)选取中产旱地, 开展大田试验。设3个单粒精播密度处理, 为27.8、23.8和20.8万株 hm-2, 株距分别为9.0 cm、10.5 cm和12.0 cm, 编号为SS9.0、SS10.5和SS12.0; 双粒播种株数27.8万株 hm-2, 株距18 cm, 记为DS18.0。结果表明, 与双粒播种(DS18.0)相比, 单粒精播栽培提高了叶片叶绿素含量(SPAD)、净光合速率(Pn)、叶面积指数(leaf area index, LAI), 且LAI峰值较高和持续时间长。单粒精播发挥了单株干物质生产潜力, 提高了群体干物质最大积累速率6.1%~20.7%, 实现了干物质的快速积累。对于高产旱地平度, 成熟期群体干物质积累量大小为SS12.0>SS9.0>SS10.5>DS18.0, 而中产旱地济阳为SS9.0>SS12.0>SS10.5>DS18.0; 与DS18.0相比, 单粒精播栽培群体干物质积累量提高5.4%~14.9%。单粒精播栽培促进了单株和群体对N、P、K、Ca的吸收和积累, 增加了N和P养分向荚果中分配比例, 提高了肥料利用效率。高产旱地中单粒精播栽培通过提高个体生产力, 增加单株饱果个数和百果重, 实现了群体增产13.6%~19.1% (2018年)和15.5%~23.8% (2019年), 适宜单粒精播密度为20.8万株 hm-2。中产旱地, 单粒精播促进个体健壮和形成高密度的群体优势是实现增产的关键, 增幅8.4%~19.4% (2018年)和13.9%~ 27.8% (2019年), 适宜密度为27.8万株 hm-2。综上, 高产旱地群体质量和养分吸收量均优于中产旱地。单粒精播栽培模式可充分发挥中、高产旱地花生单株生产潜力, 促进光合产物积累和养分吸收利用, 改善了中、高产旱地花生群体质量, 表现为“强源” “畅流” “壮库”, 提高了荚果产量和收获指数, 实现了花生高产高效。

关键词: 花生, 单粒精播, 群体质量, 中、高产旱地, 养分, 产量

Abstract:

To investigate the suitable single seed precision sowing density in medium and high-yield drylands and provide a theoretical basis for high-yield and high-efficiency cultivation in peanut, the overyielding mechanism of single seed precision sowing was studied by analyzing the differences of individual and population quality and nutrient absorption under different single seed precision sowing planting densities of peanut in medium and high-yield drylands. High-yield drylands were selected in Pingdu (PD) of Shandong province and middle drylands were selected in Jiyang (JY) of Shandong province for field experiments in 2018 and 2019. Three single seed precision sowing density treatments were established. Compared with the double-seed sowing (278,000 plants hm-2, DS18.0, CK), three single seed precision sowing treatments were 278,000 plants hm-2 (SS9.0), 238,000 plants hm-2 (SS10.5), and 208,000 plants hm-2 (SS12.0), respectively. Plant spacing of single seed sowing of SS9.0, SS10.5, and SS12.0 treatments in peanut was 9.0, 10.5, and 12.0 cm, and plant spacing of double-seed sowing of DS18.0 treatment in peanut was 18.0 cm. The results showed that compared with double seed sowing treatment (DS18.0), single seed precision sowing cultivation improved leaf SPAD, net photosynthetic rate, leaf area index (LAI), the peak value, and duration of leaf area index were higher. Single seed precision sowing exerted the potential of single plant dry matter production, increased the maximum accumulation rate of population dry matter by 6.1% to 20.7%, and realized the rapid accumulation of dry matter. For high-yield drylands in Pingdu, the population dry matter accumulation was SS12.0>SS9.0>SS10.5>DS18.0 at mature stage, and that was SS9.0>SS12.0>SS10.5>DS18.0 under middle-yield dryland in Jiyang. Compared with DS18.0, the population dry matter accumulation of single seed sowing cultivation increased by 5.4%-14.9%. Single seed precision sowing cultivation promoted the absorption and the accumulation of N, P, K, and Ca of individual plants and population plants, and increased the distribution ratio of N and P nutrients to pods, and improved fertilizer utilization efficiency. For high-yield drylands, by increasing individual productivity and increasing the number of full fruits and 100-fruit weight per plant, single seed precision sowing had achieved population yield increase of 13.6%-19.1% (2018) and 15.5%-23.8% (2019), and the suitable single seed precision sowing density was 208,000 plants hm-2. In the middle yield dryland, single seed precision sowing promoted individual fitness and formed the population advantage of high density, which was the key effect to increase production with an increase of 8.4%-19.4% (2018) and 13.9%-27.8% (2019), and the suitable density was 278,000 plants hm-2. In conclusion, the population quality and nutrient absorption of high-yield drylands were better than that of middle-yield drylands. The single-seed precision seeding cultivation model can make full use of the production potential of a single plant for medium and high-yield drylands in peanut, promote the accumulation of photosynthetic product and the absorption and utilization of nutrients, and consequently improve the quality of peanuts in both medium and high-yield drylands. This mechanism was characterized by “strong source”, “smooth flow”, and “large sink”. Therefore, this method could help to increase the pod yield and harvest index, and realize the high yield and high efficiency of peanut.

Key words: peanut, single seed precision sowing, population quality, medium and high yield drylands, nutrient, yield

表1

单粒精播对花生产量及产量构成的影响"

年份
Year
样点
Spot
处理
Treatment
饱果数
Full pods (×105 hm-2)
秕果数
Unfull pods (×105 hm-2)
单株饱
果数
Full pods
per plant
单株秕
果数
Unfull pods per plant
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
收获
指数
Harvest index
产量
Pod yield
(kg hm-2)
2018 PD SS9.0 31.0 a 20.4 a 11.2 b 7.3 ab 215.5 bc 85.3 b 0.60 a 7480.9 a
SS10.5 30.1 a 17.9 bc 12.7 ab 7.5 ab 226.6 b 88.3 a 0.59 a 7216.3 ab
SS12.0 29.8 a 17.0 c 14.3 a 8.2 a 232.7 a 89.7 a 0.61 a 7565.5 a
DS18.0 25.9 b 19.9 a 9.3 c 7.2 ab 209.9 c 83.4 bc 0.57 b 6349.6 c
2019 PD SS9.0 31.9 a 19.8 a 11.5 b 7.1 ab 225.8 b 89.5 a 0.55 c 7559.8 a
SS10.5 28.5 ab 17.7 bc 12.0 ab 7.4 ab 232.0 a 90.4 a 0.54 c 7147.7 b
SS12.0 30.2 a 15.1 d 14.5 a 7.2 ab 240.0 a 91.5 a 0.55 c 7667.0 a
DS18.0 29.1 a 16.2 cd 10.5 b 5.8 b 221.5 b 86.9 b 0.50 e 6190.6 c
2018 JY SS9.0 21.2 c 19.6 a 7.6 cd 6.6 b 204.8 c 82.1 bc 0.54 c 4713.4 d
SS10.5 19.7 cd 15.7 cd 8.3 c 6.5 b 208.0 c 84.3 b 0.53 cd 4279.7 e
SS12.0 19.9 cd 13.5 e 9.6 c 6.6 b 214.7 bc 86.1 b 0.54 c 4591.1 d
DS18.0 17.9 de 18.5 b 6.4 b 6.7 ab 199.2 d 77.7 d 0.51 de 3946.4 e
2019 JY SS9.0 20.6 c 17.6 bc 7.4 d 6.3 b 205.7 c 80.7 c 0.53 cd 4502.3 d
SS10.5 19.0 d 16.8 c 8.0 c 7.1 ab 208.6 c 82.3 bc 0.52 d 4013.0 e
SS12.0 18.7 e 13.7 e 9.0 c 7.3 ab 216.9 bc 85.7 b 0.53 cd 4474.5 d
DS18.0 16.9 e 18.1 b 6.1 d 6.2 b 198.4 d 76.4 d 0.50 e 3522.6 f

图1

单粒精播对花生功能叶片SPAD值的影响 PD: 平度; JY: 济阳。图柱上不同小写字母表示同一时期内处理间差异显著(P < 0.05)。处理同表1。8次重复。"

图2

单粒精播对叶面积指数的影响 PD: 平度; JY: 济阳; LAI: 叶面积指数。处理同表1。3次重复。"

表2

单粒精播对结荚期花生光合作用的影响"

处理
Treatment
PD JY
净光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2
浓度
Ci (μL L-1)
蒸腾速率
Tr
(mmol m-2 s-1)
净光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2
浓度
Ci (μL L-1)
蒸腾速率
Tr
(mmol m-2 s-1)
SS9.0 23.8 b 0.31 c 196.0 b 4.1 c 21.4 c 0.22 c 167.4 b 3.6 c
SS10.5 24.0 b 0.41 b 230.0 a 4.7 b 23.5 b 0.31 b 186.0 a 4.3 b
SS12.0 27.2 a 0.49 a 231.9 a 5.1 a 26.4 a 0.42 a 192.1 a 5.3 a
DS18.0 22.8 c 0.24 d 174.4 c 3.6 d 19.3 d 0.19 c 157.2 c 3.5 c

表3

中、高产旱地花生干物质累积动态特征值"

样点
Spot
处理
Treatment
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
回归方程
Regression equation
决定系数R2
Coefficient of determination
PD SS9.0 13,842.5 285.8 68.2 52.3 84.1 31.9 $y=\frac{13842.5}{1+279.52731{{\text{e}}^{-0.0826x}}}$ 0.9882
SS10.5 13,206.0 287.9 66.0 50.9 81.1 30.2 $y=\frac{13206.0}{1+315.98666{{\text{e}}^{-0.0872x}}}$ 0.9892
SS12.0 14,315.7 317.1 66.2 51.4 81.1 29.7 $y=\frac{14315.7}{1+353.86569{{\text{e}}^{-0.0886x}}}$ 0.9949
DS18.0 12,485.1 262.8 67.3 51.7 83.0 31.3 $y=\frac{12485.1}{1+290.26665{{\text{e}}^{-0.0842x}}}$ 0.9898
JY SS9.0 12,608.0 242.1 64.4 47.3 81.6 34.3 $y=\frac{12608.0}{1+141.11851{{\text{e}}^{-0.0768x}}}$ 0.9859
SS10.5 11,583.2 225.6 63.4 46.5 80.3 33.8 $y=\frac{11583.2}{1+139.98423{{\text{e}}^{-0.0779x}}}$ 0.9879
SS12.0 12,116.7 237.5 62.9 46.1 79.7 33.6 $y=\frac{12116.7}{1+138.57338{{\text{e}}^{-0.0784x}}}$ 0.981
DS18.0 11,002.7 212.6 64.2 47.1 81.2 34.1 $y=\frac{11002.7}{1+142.55102{{\text{e}}^{-0.0773x}}}$ 0.9867

图3

单粒精播对单株和群体干物质积累的影响 PD: 平度; JY: 济阳。处理同表1。3次重复。"

表4

不同密度单粒精播对花生单株和群体氮素累积吸收分配的影响"

样点
Spot
处理
Treatment
群体氮素积累
N accumulation
in total plants
(kg hm-2)
氮素积累
N accumulation (mg plant-1)
氮素分配比例
N distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 402.5 a 1447.9 c 10.7 c 143.7 c 167.1 d 1126.4 b 0.7 c 9.9 d 11.5 d 77.8 a
SS10.5 381.0 b 1601.0 b 13.1 b 176.5 b 196.2 c 1215.2 b 0.8 b 11.2 c 12.3 d 75.9 b
SS12.0 401.8 a 1931.5 a 16.9 a 190.5 a 219.7 b 1504.5 a 0.9 a 9.9 d 11.4 b 77.9 a
DS18.0 371.8 b 1337.3 d 10.9 c 179.3 b 167.8 d 979.3 c 0.8 b 13.4 a 12.6 c 73.2 c
JY SS9.0 344.8 c 1240.4 d 15.7 a 157.2 c 196.8 c 870.8 c 1.3 a 12.7 bc 15.9 b 70.2 d
SS10.5 315.0 d 1323.4 d 15.2 a 175.7 b 231.7 b 900.9 c 1.2 a 13.3 b 17.5 a 68.1 c
SS12.0 341.7 c 1642.6 b 14.2 ab 189.7 a 270.0 a 1168.6 b 0.9 a 11.6 c 16.4 ab 71.2 d
DS18.0 308.2 d 1108.5 e 13.7 ab 175.8 b 195.6 c 723.4 d 1.2a 15.9 a 17.6 a 65.3 e

表5

不同密度单粒精播对花生单株和群体磷素累积吸收分配的影响"

样点
Spot
处理
Treatment
群体磷素积累
P accumulation
in total plants
(kg hm-2)
磷素积累
P accumulation (mg plant-1)
磷素分配比例
P distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 52.6 a 189.4 c 3.1 a 29.7 b 14.5 e 142.0 b 1.7 b 15.7 c 7.6 d 75.0 a
SS10.5 48.4 c 203.5 b 2.9 a 32.7 a 17.6 d 150.3 b 1.4 c 16.1 c 8.7 d 73.9 b
SS12.0 50.1 b 241.0 a 3.2 a 35.3 a 19.8 c 182.7 a 1.3 c 14.7 d 8.2 d 75.8 a
DS18.0 43.4 d 156.1 d 1.5 b 28.8 b 16.0 d 109.9 c 1.0 d 18.4 a 10.2 c 70.4 c
JY SS9.0 44.8 d 161.3 d 4.6 a 29.8 b 17.4 d 109.5 c 2.9 a 18.5 b 10.8 c 67.9 d
SS10.5 40.0 e 167.9 d 3.4 a 32.6 a 21.5 b 110.4 c 2.0 b 19.4 b 12.8 b 65.8 e
SS12.0 42.0 d 202.1 b 2.7 ab 34.8 a 24.1 a 140.5 b 1.3 c 17.2 bc 11.9 b 69.5 c
DS18.0 36.5 f 131.3 e 1.9 b 28.4 b 18.6 cd 82.4 d 1.4 c 21.6 a 14.2 a 62.8 f

表6

不同密度单粒精播对花生单株和群体钾素吸收累积分配的影响"

样点
Spot
处理
Treatment
群体钾素积累
K accumulation
in total plants
(kg hm-2)
钾素积累
K accumulation (mg plant-1)
钾素分配比例
K distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 189.0 a 679.9 e 12.3 c 314.0 c 86.2 c 267.5 c 1.8 a 46.2 b 12.7 b 39.4 a
SS10.5 181.8 ab 763.8 c 12.3 c 354.7 b 96.0 b 300.8 b 1.6 a 46.4 b 12.6 b 39.4 a
SS12.0 183.8 ab 883.5 a 11.9 cd 410.3 a 116.0 ab 345.3 a 1.4 a 46.4 b 13.1 b 39.1 a
DS18.0 176.9 b 636.5 f 10.9 d 291.4 c 82.5 c 251.6 c 1.7 a 45.8 b 13.0 b 39.5 a
JY SS9.0 186.5 ab 671.0 e 17.9 a 335.4 b 103.7 b 213.9 d 2.7 a 50.0 a 15.5 a 31.9 c
SS10.5 168.8 bc 709.3 d 14.3 b 352.7 b 117.4 ab 225.0 d 2.0 a 49.7 a 16.6 a 31.7 c
SS12.0 171.5 b 824.4 b 14.7 b 412.1 a 136.4 a 261.3 c 1.8 a 50.0 a 16.5 a 31.7 c
DS18.0 165.5 c 595.2 g 13.8 b 288.3 c 96.1 b 197.0 d 2.3 a 48.4 ab 16.2 a 33.1 b

表7

不同密度单粒精播对花生单株和群体钙素吸收累积分配的影响"

样点
Spot
处理
Treatment
群体钙素积累
Ca accumulation
in total plants
(kg hm-2)
钙素积累
Ca accumulation (mg plant-1)
钙素分配比例
Ca distribution (%)
单株
Plant

Root

Stem

Leaf
荚果
Pod

Root

Stem

Leaf
荚果
Pod
PD SS9.0 117.1 a 421.1 c 11.5 b 144.7 bc 160.6 c 104.4 cd 2.7 ab 34.4 a 38.1 b 24.8 a
SS10.5 120.4 a 506.0 b 14.0 a 191.9 a 174.0 c 126.2 b 2.8 ab 38.0 a 34.4 c 24.9 a
SS12.0 122.72 a 590.0 a 14.7 a 205.1 a 223.7 ab 146.5 a 2.5 b 34.8 a 37.9 b 24.8 a
DS18.0 102.7 b 369.5 d 8.5 c 135.9 c 127.9 d 97.2 d 2.3 bc 36.8 a 34.6 c 26.3 a
JY SS9.0 124.6 a 448.3 c 16.7 a 161.4 b 185.8 c 84.4 e 3.7 a 36.0 a 41.4 a 18.8 b
SS10.5 119.4 a 501.9 b 16.2 a 179.0 b 212.7 b 94.0 d 3.2 a 35.7 a 42.4 a 18.7 b
SS12.0 122.1 a 586.8 a 12.3 b 212.2 a 250.3 a 112.0 c 2.1 c 36.1 a 42.7 a 19.1 b
DS18.0 107.7 b 387.5 d 10.7 c 138.3 c 158.4 c 80.1 e 2.8 ab 35.7 a 40.8 a 20.7 b

图4

单粒精播对肥料偏生产力的影响 PD: 平度; JY: 济阳。不同小写字母表示处理间差异显著(P < 0.05)。处理同表1。3次重复。"

[1] 王才斌. 实施理性栽培, 推进山东花生生产可持续发展. 花生学报, 2018, 47(1): 74-76.
Wang C B. Rational cultivation promotes the sustainable development of peanut production in Shandong. J Peanut Sci, 2018, 47(1): 74-76. (in Chinese with English abstract)
[2] 王在序, 盖树人. 山东花生. 上海: 上海科学技术出版社, 1999. pp 1-15.
Wang Z X, Ge S R. Shandong Peanut. Shanghai: Shanghai Scientific and Technolical publishers, 1999. pp 1-15. (in Chinese)
[3] Reddy T Y, Reddy V R, Anbumozhi V. Physiological responses of peanut (Arachis hypogaea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul, 2003, 41: 75-88.
doi: 10.1023/A:1027353430164
[4] 万书波, 张佳蕾. 花生单粒精播高产栽培理论与技术. 北京: 科学出版社, 2020. pp 231-251.
Wan S B, Zhang J L. Theory and Technology of Peanut High Yield Cultivation with Single Seed Precision Sowing. Beijing: Science Press, 2020. pp 231-251. (in Chinese)
[5] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 35-48.
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 35-48. (in Chinese with English abstract)
[6] Wang Y, Pang Y L, Chen K, Zhai L Y, Shen C C, Wang S, Xu J L. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. Crop J, 2020, 8: 119-131.
doi: 10.1016/j.cj.2019.05.001
[7] Senthold A, Belay T K, Marcelo H L, Amador C, Daniel F C. Simulating the impact of source-sink manipulations in wheat. Field Crops Res, 2017, 202: 47-56.
doi: 10.1016/j.fcr.2016.04.031
[8] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51: 4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S. Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018, 51: 4264-4276 (in Chinese with English abstract).
[9] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34: 447-455.
doi: 10.3724/SP.J.1006.2008.00447
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008, 34: 447-455. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00447
[10] 张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.
Zhang J L, Guo F, Miao H C, Li L M, Yang S, Geng Y, Meng J J, Li X G, Wan S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. J Peanut Sci, 2018, 47(2): 52-58. (in Chinese with English abstract)
[11] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766. (in Chinese with English abstract)
[12] Liang X Y, Guo F, Feng Y, Zhang J L, Yang S, Meng J J, Li X G, Wan S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. J Integr Agric, 2020, 19: 1019-1032.
doi: 10.1016/S2095-3119(19)62712-7
[13] Zhang J L, Geng Y, Guo F, Li X G, Wan S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. J Integr Agric, 2020, 19: 1919-1927.
doi: 10.1016/S2095-3119(19)62763-2
[14] 赵长星, 邵长亮, 王月福, 宋传雪, 王铭伦. 单粒精播模式下种植密度对花生群体生态特征及产量的影响. 农学学报, 2013, 3(2):1-5.
Zhao C X, Shao C L, Wang Y F, Song C X, Wang M L. Effects of different planting densities on population ecological characteristics and yield of peanut under the mode of single-seed precision sowing. J Agric, 2013, 3(2): 1-5 (in Chinese with English abstract).
[15] 冯烨, 郭峰, 李宝龙, 孟静静, 李新国, 万书波. 单粒精播对花生根系生长、根冠比和产量的影响. 作物学报, 2013, 39: 2228-2237.
doi: 10.3724/SP.J.1006.2013.02228
Feng Y, Guo F, Li B L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing on root growth, root-shoot ratio, and yield in peanut (Arachis hypogaca L.). Acta Agron Sin, 2013, 39: 2228-2237. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02228
[16] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26: 3700-3706.
Liang X Y, Guo F, Zhang J L, Meng J J, Li L, Wan S B, Li X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chin J Appl Ecol, 2015, 26: 3700-3706. (in Chinese with English abstract)
[17] 姚远, 刘兆新, 刘妍, 刘婷如, 何美娟, 李向东. 花生、玉米不同间作方式对花生生理性状以及产量的影响. 花生学报, 2017, 46(1): 1-7.
Yao Y, Liu Z X, Liu Y, Liu T R, He M J, Li X D. Effect of different peanut-maize intercropping patterns on peanut growth and yield. J Peanut Sci, 2017, 46(1): 1-7. (in Chinese with English abstract)
[18] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186
Wang J G, Zhang J L, Guo F, Tang Z H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract)
[19] 武兰芳, 欧阳竹. 不同播量与行距对小麦产量与辐射截获利用的影响. 中国生态农业学报, 2014, 22: 31-36.
Wu L F, Qu-yang Z. Effects of row spacing and seeding rate on radiation use efficiency and grain yield of wheat. Chin J Eco-Agric, 2014, 22: 31-36. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2014.30568
[20] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类. 作物学报, 2021, 47: 1712-1723.
doi: 10.3724/SP.J.1006.2021.04164
Gao F, Liu Z X, Zhao J H, Wang Y, Pan X Y, Lai H J, Li X D, Yang D Q. Source-sink characteristics and classification of peanut major cultivars in North China. Acta Agron Sin, 2021, 47: 1712-1723. (in Chinese with English abstract)
[21] 张佳蕾, 张雷, 林英杰, 刘颖, 王建国, 郭峰, 唐朝辉, 李新国, 万书波. 单粒精播对花生生物学特性的影响. 中国油料作物学报, 2020, 42: 960-969.
Zhang J L, Zhang L, Lin Y J, Liu Y, Wang J G, Guo F, Tang Z H, Li X G, Wan S B. Effects of single seed sowing on biological characteristics of peanut. Chin J Oil Crop Sci, 2020, 42: 960-969. (in Chinese with English abstract)
[22] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响. 作物学报, 2020, 46: 1605-1616.
Liu J H, Wu Z F, Shen P, Yu T Y, Zheng Y M, Sun X W, Li L, Chen D X, Wang C B, Wan S B. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed planting in peanut. Acta Agron Sin, 2020, 46: 1605-1616. (in Chinese with English abstract)
[23] 赵鹏飞. 小麦/玉米轮作体系农户产量差定量及其缩减途径. 中国农业大学博士学位论文, 北京, 2016.
Zhao P F. Quantifying and Closing Yield Gaps for Winter Wheat and Summer Maize Rotation in Smallholder Farming System. PhD Dissertation of China Agricultural University, Beijing, China, 2016. (in Chinese with English abstract)
[24] 李娜, 姜伟, 周进, 张华, 崔中凯, 邸志峰. 山东省花生生产全程机械化现状与对策建议. 中国农机化学报, 2019, 40(10): 42-50.
doi: 10.13733/j.jcam.issn.2095-5553.2019.10.09
Li N, Jiang W, Zhou J, Zhang H, Cui Z K, Di Z F. Present situation and countermeasures of peanut production mechanization in Shandong province. J Chin Agric Mechan, 2019, 40(10): 42-50. (in Chinese with English abstract)
[25] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47: 2459-2470.
doi: 10.3724/SP.J.1006.2021.04252
Dong E W, Wang J S, Wu A L, Wang Y, Wang L G, Han X, Guo J, Jiao X Y. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle. Acta Agron Sin, 2021, 47: 2459-2470. (in Chinese with English abstract)
[26] 梁晓艳, 郭峰, 张佳蕾, 李林, 孟静静, 李新国, 万书波. 不同密度单粒精播对花生养分吸收及分配的影响. 中国生态农业学报, 2016, 24: 893-901.
Liang X Y, Guo F, Zhang J L, Li L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing at different densities on nutrient uptake and distribution in peanut. Chin J Eco-Agric, 2016, 24: 893-901. (in Chinese with English abstract)
[27] 余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. 植物营养与肥料学报, 2009, 15: 1-8.
Yu C B, Sun J H, Li L. Effects of interspecific interactions on crop growth and nutrition accumulation. Plant Nutr Fert Sci, 2009, 15: 1-8. (in Chinese with English abstract)
[28] 董钻, 那桂秋. 大豆叶、粒关系的研究. 大豆科学, 1993, 12(1): 1-7.
Dong Z, Na G Q. Correlative performance between leaf and seed in soybeans. Soybean Sci, 1993, 12(1): 1-7. (in Chinese with English abstract)
[29] 潘晓华, 邓强辉. 作物收获指数的研究进展. 江西农业大学学报, 2007, 29: 1-5.
Pan X H, Deng Q H. Research progress of crop harvest index. Acta Agric Univ Jiangxiensis, 2007, 29: 1-5. (in Chinese with English abstract)
[30] 赵桂范, 连成才, 郑天琪, 王成, 张洪全. 种植方式对大豆植株干物质积累及养分吸收影响的研究. 大豆科学, 1995, 14: 233-240.
Zhao G F, Lian C C, Zheng T Q, Wang C, Zhang H Q. Effects of planting methods on dry matter accumulation and nutrient absorption of soybean plants. Soybean Sci, 1995, 14: 233-240. (in Chinese with English abstract)
[31] Damisch W. Biomass yield and topical issue in model wheat breeding programmers. Plant Breed, 1996, 107: 11-17.
doi: 10.1111/j.1439-0523.1991.tb00523.x
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[5] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[6] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[7] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[8] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[9] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[10] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[11] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[12] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[13] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[14] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[15] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .