欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2953-2964.doi: 10.3724/SP.J.1006.2022.11107

• 研究简报 • 上一篇    

不同基因型燕麦产量差异与叶片生理特性的关系

柳妍娣1(), 赵宝平1,*(), 张宇1, 米俊珍1, 武俊英2, 刘景辉1   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特 010000
    2内蒙古农业大学职业技术学院, 内蒙古包头 014000
  • 收稿日期:2021-11-30 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-03-24
  • 通讯作者: 赵宝平
  • 作者简介:第一作者联系方式: E-mail: 1776242393@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(31960378);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07);国家重点研发计划项目国际合作重点专项(2018YFE0107900)

Relationship between yield differences of different genotypes of oats and leaf physiological characteristics

LIU Yan-Di1(), ZHAO Bao-Ping1,*(), ZHANG Yu1, MI Jun-Zhen1, WU Jun-Ying2, LIU Jing-Hui1   

  1. 1School of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia, China
    2Vocational and Technical College of Inner Mongolia Agricultural University, Baotou 014000, Inner Mongolia, China
  • Received:2021-11-30 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-03-24
  • Contact: ZHAO Bao-Ping
  • Supported by:
    The National Natural Science Foundation of China(31960378);The China Agriculture Research System of MOF and MARA(CARS-07);The International Cooperation Key Special Project of National Key Research and Development Program(2018YFE0107900)

摘要:

为了解燕麦穗花形成过程中叶片生理特性对产量的影响, 本试验于2020年和2021年, 以9个不同来源、熟期、穗型、株型、小穗数的品种为试验材料, 采用方差分析、主成分分析、聚类分析等方法, 对不同基因型燕麦产量差异与叶片生理特性的关系进行分析。结果表明: 不同品种间, 抽穗期各生理指标存在显著差异, 通过聚类分析, 将供试的9个品种分为高产和低产品种两类, 其中高产品种较低产品种的籽粒产量显著高73.61%~4.78%; 高产品种的GA3、ZR、IAA含量、SPS、SS活性、净光合速率、叶片蔗糖含量、干物质积累量、穗部蔗糖同化效率的整体水平均优于低产品种; 其中, GA3含量、SPS活性和净光合速率较低产品种显著高49.17%~13.70%、33.29%~4.43%、87.88%~5.72%。结果表明, 结实小穗数、穗粒数、叶片赤霉素含量、蔗糖磷酸合成酶活性和净光合速率对高产品种的产量形成影响最为显著。说明可将增加结实小穗数、穗粒数作为提高产量的突破口, 适当开“源”、延缓叶片衰老以保证酶和激素的活性, 对燕麦获得高产有积极影响。

关键词: 燕麦, 产量, 生理特性, 抽穗期, 主成分分析

Abstract:

To understand the effects of leaf physiological characteristics on yield during flowering process in oats, this experiment was conducted in 2020 and 2021, using nine varieties with different sources, maturity, ear type, plant type, and number of spikelets as experimental materials, and variance analysis, principal component analysis, cluster analysis, and other methods are used to analyze the relationship between the yield differences of different genotypes of oats and the physiological characteristics of leaves. The results showed that there were significant differences in the physiological characteristics of different varieties. The grain yield of high-yield varieties and lower-product varieties was significantly higher by 73.61% to 4.78%. The contents of GA3, ZR, IAA, SPS, SS activities, net photosynthetic rate, the overall level of leaf sucrose content, dry matter accumulation, and ear sucrose assimilation efficiency was better than those of low-yield varieties. Among them, the lower GA3 content, SPS activity, and net photosynthetic rate product varieties were significantly higher by 49.17% to 13.70%, 33.29% to 4.43%, and 87.88% to 5.72%. The results showed that the number of spikelets, the number of grains per spike, the content of gibberellin in leaves, the activity of sucrose phosphate synthase, and the net photosynthetic rate had the most significant effects on high-yielding varieties. These results indicated that increasing the number of bearing spikelets and the number of grains per ear can be used as a breakthrough to increase yield, appropriately opening the “source” and delaying leaf senescence to ensure the activity of enzymes and hormones, which had a positive impact on yield in oat.

Key words: oats, yield, physiological characteristics, heading date, principal component analysis

表1

9个不同基因型燕麦的主要特征"

品种
Variety
皮裸性
Hulled or naked
株型
Plant type
穗型
Spike type
小穗数
Number of spikelets
熟期
Maturity stage
来源
Source
坝莜1号
Ba1

Naked
紧凑
Compact
周散
Scattered around
21, 中
21, middle
中熟
Middle maturity
河北
Hebei
坝莜9号
Ba9

Naked
紧凑
Compact
周散
Scattered around
30, 多
30, many
中熟
Middle maturity
河北
Hebei
坝莜18号
Ba18

Naked
紧凑
Compact
周散
Scattered around
39, 多
39, many
晚熟
Late maturity
河北
Hebei
草莜1号
Cao1

Naked
紧凑高秆
Compact high pole
周散
Scattered around
21, 中
21, middle
早熟
Early maturity
内蒙古
Inner Mongolia
白燕2号
Bai2

Naked
紧凑
Compact
侧散
Side scattered
11, 少
11, few
早熟
Early maturity
吉林
Jilin
白燕5号
Bai5

Naked
紧凑矮秆
Compact low bar
侧散
Side scattered
12, 少
12, few
早熟
Early maturity
吉林
Jilin
华北2号
Hua2

Naked
紧凑
Compact
周散
Scattered around
20, 中
20, middle
中熟
Middle maturity
河北
Hebei
定莜8号
Ding8

Naked
紧凑高秆
Compact high pole
周散
Scattered around
24, 中
24, middle
晚熟
Late maturity
甘肃定西
Dingxi, Gansu
蒙燕1号
Meng1

Hulled
紧凑
Compact
周散
Scattered around
27, 中
27, middle
中熟
Middle maturity
内蒙古
Inner Mongolia

表2

各品种生育时期及基本苗数"

年份
Year
基因型
Genotype
生育时期Childbearing period (month/day) 全生育期
Whole growth
stage (d)
基本苗数
Basic seedling
(×104 hm-2)
分蘖期
Tillering stage
拔节期
Jointing stage
抽穗期Heading stage 灌浆期
Grouting stage
成熟期
Maturity
2020 Ba1 5/27 6/4 6/27 7/12 7/30 92 400.20 ab
Ba9 5/27 6/4 6/27 7/12 7/31 93 430.22 a
Ba18 5/29 6/7 6/30 7/16 8/10 103 370.19 bcd
Cao1 5/27 6/5 6/27 7/12 8/3 96 330.17 e
Bai2 5/27 6/3 6/24 7/10 7/26 88 320.16 f
Bai5 5/27 6/4 6/24 7/11 7/28 90 350.18 cde
Hua2 5/27 6/4 6/26 7/12 7/31 93 420.21 a
Ding8 5/27 6/4 6/26 7/11 7/30 92 340.17 de
Meng1 5/27 6/4 6/27 7/13 7/31 93 380.19 bc
2021 Ba1 5/17 6/3 6/17 6/25 7/13 95 405.54 ab
Ba9 5/16 6/3 6/17 6/26 7/14 96 349.51 cd
Ba18 5/19 6/6 6/20 6/30 7/20 102 412.21 ab
Cao1 5/16 6/3 6/17 6/25 7/13 95 384.19 bc
Bai2 5/16 6/3 6/11 6/19 7/4 86 393.53 b
Bai5 5/16 5/26 6/11 6/20 7/5 87 344.17 d
Hua2 5/16 6/3 6/16 6/24 7/13 95 436.22 a
Ding8 5/16 5/26 6/19 6/24 7/13 95 318.83 d
Meng1 5/16 5/26 6/19 6/26 7/13 95 409.54 ab

表3

不同基因型燕麦产量差异"

年份
Year
基因型Genotype 单位面积穗数
Number of ears per unit area
结实小穗数
Number of fruiting spikelets
花梢小穗数
Number of fancy spikelets
穗粒数
Number of grains per spike
籽粒产量
Grain yield
(kg hm-2)
2020 Ba1 408.33 a 41.40 a 0.67 e 107.15 a 3483.41 a
Ba9 383.00 c 34.31 b 2.13 d 72.58 d 3075.64 c
Ba18 396.00 b 40.53 a 3.99 c 91.13 b 3365.22 b
Cao1 258.33 g 34.53 b 4.13 c 82.09 c 2623.98 d
Bai2 214.33 i 29.93 c 4.02 c 69.27 f 2030.68 g
Bai5 313.00 f 30.18 c 2.02 d 70.78 e 2457.26 e
Hua2 240.00 h 24.94 d 5.26 b 61.40 g 2037.75 g
Ding8 334.00 e 18.20 e 8.38 a 48.87 i 2007.80 h
Meng1 371.00 d 23.93 d 5.13 b 55.08 h 2185.09 f
2021 Ba1 483.13 a 36.43 a 1.55 f 102.22 a 3581.79 a
Ba9 464.23 b 33.08 b 3.22 d 95.42 b 3247.87 b
Ba18 418.37 d 29.24 c 4.22 b 81.44 c 2963.98 c
Cao1 395.00 f 32.52 b 3.77 c 82.37 c 2813.91 d
Bai2 357.77 i 23.85 f 4.94 a 60.37 g 2320.78 h
Bai5 380.00 g 25.23 de 2.40 e 76.78 d 2767.88 e
Hua2 369.67 h 24.25 ef 4.04 bc 63.05 f 2436.22 g
Ding8 409.97 e 21.92 g 5.23 a 52.63 h 2063.16 i
Meng1 452.57 c 26.23 d 4.88 a 66.63 e 2625.24 f
年份Year (Y) *** *** * *** ***
品种Variety (V) *** *** *** *** ***
Y×V *** *** *** *** ***

表4

不同基因型燕麦花前干物质转运与花后干物质积累的差异"

年份
Year
基因型Genotype 花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
转运量
Translocation amount
(kg hm-2)
贡献率
Contribution rate
(%)
积累量
Accumulation amount (kg hm-2)
贡献率
Contribution rate
(%)
2020 Ba1 559.75 e 16.07 2923.66 a 83.93
Ba9 768.38 c 24.98 2307.25 c 75.02
Ba18 608.09 e 18.07 2757.12 b 81.93
Cao1 688.62 d 26.24 1935.36 d 73.76
Bai2 896.98 b 44.17 1133.70 fg 55.83
Bai5 745.23 cd 30.33 1712.04 e 69.67
Hua2 1005.84 a 49.36 1031.92 g 50.64
Ding8 1028.78 a 51.24 979.02 g 48.76
Meng1 974.35 a 44.59 1210.74 f 55.41
2021 Ba1 513.32 e 14.33 3068.47 a 85.67
Ba9 584.29 d 17.99 2663.58 b 82.01
Ba18 522.18 de 17.62 2441.80 c 82.38
Cao1 517.06 e 18.38 2296.85 cd 81.62
Bai2 710.76 c 30.63 1610.03 ef 69.37
Bai5 647.79 c 23.40 2120.09 d 76.60
Hua2 910.32 b 37.37 1525.90 f 62.63
Ding8 1110.42 a 53.82 952.73 g 46.18
Meng1 862.56 b 32.86 1762.67 e 67.14

表5

不同基因型燕麦蔗糖含量差异"

年份
Year
基因型Genotype 抽穗期蔗糖含量
Sucrose content at heading stage (mg g-1)
成熟期蔗糖含量
Sucrose content at maturity (mg g-1)
穗部蔗糖同化效率
Spike sucrose
assimilation efficiency (%)
茎Stem 叶Leaf 穗Spike 茎Stem 叶Leaf 穗Spike
2020 Ba1 128.30 a 129.84 a 110.79 a 41.98 g 30.57 f 13.51 g 87.81
Ba9 123.43 b 110.13 c 105.89 b 47.63 ef 37.36 e 16.81 ef 84.13
Ba18 126.25 a 113.43 b 111.74 a 46.13 f 33.21 f 15.96 f 85.72
Cao1 109.19 c 103.25 d 98.82 c 48.77 e 37.08 e 17.19 e 82.61
Bai2 80.72 e 97.41 f 84.59 f 59.89 b 49.61 b 23.60 b 72.09
Bai5 98.07 d 101.08 de 94.96 d 52.06 d 42.17 d 19.54 d 79.42
Hua2 82.04 e 96.94 f 87.23 e 58.95 b 47.63 bc 20.48 c 76.52
Ding8 79.87 e 93.26 g 82.80 g 65.54 a 53.10 a 25.20 a 69.57
Meng1 96.28 d 99.01 ef 94.20 d 54.52 c 44.81 cd 20.58 c 78.15
2021 Ba1 126.00 a 122.56 a 106.81 a 49.05 g 37.64 f 20.58 g 80.73
Ba9 120.81 b 103.64 bc 96.47 b 54.70 ef 44.43 e 23.88 ef 75.25
Ba18 110.89 c 106.57 b 104.88 a 53.20 f 40.28 f 23.03 f 78.04
Cao1 122.38 ab 101.54 c 94.98 bc 55.84 e 44.15 e 24.26 e 74.46
Bai2 76.43 f 94.73 d 82.63 e 66.96 b 56.68 b 30.67 b 62.88
Bai5 81.31 e 94.53 d 88.36 d 61.59 c 49.24 d 27.65 c 68.71
Hua2 78.66 ef 94.42 d 83.37 e 66.02 b 54.70 bc 27.55 c 66.95
Ding8 75.03 f 95.94 d 82.65 e 72.62 a 60.17 a 32.27 a 60.96
Meng1 99.40 d 94.36 d 93.37 c 59.14 d 51.88 cd 26.61 d 71.50

表6

不同基因型燕麦光合特性差异"

年份
Year
基因型
Genotype
净光合速率
Pn (μmol m-2 s-1)
蒸腾速率
Tr (mmol m-2 s-1)
气孔导度
Gs (mmol m-2 s-1)
胞间CO2浓度
Ci (μmol mol-1)
2020 Ba1 30.85 a 10.38 a 277.05 a 364.00 a
Ba9 24.64 c 8.50 cd 189.02 d 346.47 c
Ba18 24.67 c 9.25 b 217.34 b 349.05 b
Cao1 28.12 b 9.16 bc 191.02 c 343.15 d
Bai2 21.41 d 6.60 f 168.23 f 335.22 f
Bai5 24.26 c 7.90 de 179.28 e 339.18 e
Hua2 18.29 e 7.67 e 148.89 g 319.47 g
Ding8 10.42 f 4.47 h 106.18 i 232.37 i
Meng1 20.50 d 5.31 g 146.48 h 280.45 h
2021 Ba1 26.90 a 13.63 a 289.32 a 497.59 a
Ba9 26.19 ab 13.60 a 288.77 ab 492.58 b
Ba18 25.67 b 13.30 a 287.24 cd 481.14 c
Cao1 23.28 c 13.20 ab 287.76 bc 455.21 d
Bai2 21.50 d 10.76 de 286.06 d 393.41 h
Bai5 22.02 d 12.03 bc 286.54 cd 412.44 f
Hua2 21.69 d 11.42 cd 286.43 cd 407.26 g
Ding8 20.45 e 9.64 e 281.58 e 350.27 i
Meng1 23.22 c 11.68 cd 286.89 cd 414.09 e
年份Year (Y) ns *** *** ***
基因型Genotype (G) *** *** *** ***
Y×G *** ** *** ***

图1

不同基因型燕麦旗叶中SPS、SS活性差异 不同字母表示差异显著(P < 0.05)。各品种见表1。"

图2

不同基因型燕麦旗叶中ZR、IAA、GA3、ABA含量差异 不同字母表示差异显著(P < 0.05)。各品种见表1。"

图3

不同基因型燕麦叶片生理特性与产量的相关性 *表示0.05水平上的显著相关性, **表示0.01水平上的极显著相关性; GY:籽粒产量; NE: 单位面积穗数; NS: 结实小穗数; NF: 花梢穗数; NG: 穗粒数; GA3: 赤霉素; IAA: 生长素; ABA: 脱落酸; ZR: 玉米素核苷; SS: 蔗糖合成酶; SPS: 蔗糖磷酸合成酶; LSC: 叶片蔗糖含量; Pn: 净光合速率。"

表7

各指标特征值及贡献率"

变量
Variable
主成分1
Principal
component 1
主成分2
Principal
component 2
GY 0.38 -0.13
NS 0.39 -0.07
NG 0.37 -0.18
GA 0.39 -0.06
IAA 0.28 0.66
ABA -0.28 0.64
ZR 0.36 0.20
Pn 0.36 0.24
特征值Eigenvalue 6.34 0.80
贡献率Contribution rate (%) 79.20 9.95
累计贡献率
Cumulative contribution rate (%)
79.20 89.15

图4

各指标主成分分析载荷系数图"

图5

不同基因型燕麦聚类分析"

[1] 任长忠, 闫金婷, 董锐, 胡新中. 燕麦营养成分、功能特性及其产品的研究进展. 食品工业科技, 2022, 43(12): 438-446.
Ren C Z, Yan J T, Dong R, Hu X Z. Research progress of oats’ nutritional components, functional properties and products. Sci Technol Food Ind, 2022, 43(12): 438-446. (in Chinese with English abstract)
[2] Browne R A, White E M, Burke J I. Responses of developmental yield formation processes in oats to variety, nitrogen, seed rate and plant growth regulator and their relationship to quality. J Agric Sci, 2006, 144: 533-545.
doi: 10.1017/S0021859606006538
[3] 李强强, 赵玥, 李璠, 朱一鸣, 杨成淦, 曹佳乐, 王志琴, 杨建昌, 顾骏飞. 作物源库关系及其生理调控途径的研究进展. 江苏农业科学, 2020, 48(9): 50-56.
Li Q Q, Zhao Y, Li F, Zhu Y M, Yang C G, Cao J L, Wang Z Q, Yang J C, Gu J F. Research progress on the source-sink relationship and physiological regulation of crops. Jiangsu Agric Sci, 2020, 48(9): 50-56. (in Chinese)
[4] Stephen P L, Amy M C, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56-66.
[5] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018, 44: 554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effects of alternate dry and wet irrigation on post-anthesis assimilation transfer and grain filling of rice. Acta Agron Sin, 2018, 44: 554-568. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00554
[6] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: 10.1016/j.plantsci.2018.06.010
[7] 陈婷婷, 褚光, 华小龙, 潘燕, 王志琴, 杨建昌. 花后干湿交替灌溉对水稻强、弱势粒蛋白质表达的影响. 中国农业科学, 2013, 46: 4665-4678.
Chen T T, Chu G, Hua X L, Pan Y, Wang Z Q, Yang J C. The effect of alternate dry and wet irrigation after flowering on the protein expression of strong and weak rice grains. Sci Agric Sin, 2013, 46: 4665-4678. (in Chinese with English abstract)
[8] 王志敏, 王树安, 苏宝林. 小麦穗粒数的调节: I. 开花前穗发育过程中的果聚糖代谢. 中国农业大学学报, 1996, 1(5): 21-26.
Wang Z M, Wang S A, Su B L. Regulation of grain number in wheat ears: I. Fructan metabolism during ear development before flowering. J China Agric Univ, 1996, 1(5): 21-26. (in Chinese)
[9] 王志敏, 王树安, 苏宝林. 小麦幼穗器官中蔗糖降解酶的活性与分布. 北京农业大学学报, 1995, 21(2): 147-151.
Wang Z M, Wang S A, Su B L. Activity and distribution of sucrose degrading enzymes in young ear organs of wheat. J Beijing Agric Univ, 1995, 21(2):147-151. (in Chinese)
[10] Ehdaie B, Alloush G A, Madore M A, Waines J G. Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. Crop Sci, 2006, 46: 735-746.
doi: 10.2135/cropsci2005.04-0033
[11] 李艳霞, 杨卫兵, 尹燕枰, 郑孟静, 陈金, 杨东清, 骆永丽, 庞党伟, 李勇, 王振林. 小麦小穗不同粒位粒重形成的生理特性差异. 作物学报, 2019, 45: 1715-1724.
doi: 10.3724/SP.J.1006.2019.91004
Li Y X, Yang W B, Yin Y P, Zheng M J, Chen J, Yang D Q, Luo Y L, Pang D W, Li Y, Wang Z L. Differences in physiological characteristics of wheat spikelets with different grain positions and grain weight formation. Acta Agron Sin, 2019, 45: 1715-1724. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.91004
[12] 雷亚柯, 王辉, 宋美丽, 魏艳丽. 不同穗型冬小麦源库关系及源库性状改良. 麦类作物学报, 2007, 27: 493-496.
Lei Y K, Wang H, Song M L, Wei Y L. Source-sink relationship and source-sink character improvement of winter wheat with different spike types. J Triticeae Crops, 2007, 27: 493-496. (in Chinese with English abstract)
[13] 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47: 2109-2125.
Yang D Q, Wang Z L, Ni Y L, Yin Y P, Cai T, Yang W B, Peng D L, Cui Z Y, Jiang W W. Effects of high temperature and exogenous ABA on grain development and endogenous hormone content of different green-holding wheat varieties. Sci Agric Sin, 2014, 47: 2109-2125. (in Chinese with English abstract)
[14] Talukder A S M H M, McDonald G K, Gill G S. Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Res, 2013, 14: 1-11.
doi: 10.1016/0378-4290(86)90042-0
[15] 张俊灵, 闫金龙, 张东旭, 孙美荣, 常海霞. 北部冬麦区旱地小麦品种的演变规律. 麦类作物学报, 2017, 37: 1017-1024.
Zhang J L, Yan J L, Zhang D X, Sun M R, Chang H X. Evolution of dryland wheat varieties in northern winter wheat regions. J Triticeae Crops, 2017, 37: 1017-1024. (in Chinese with English abstract)
[16] 张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 93-98.
Zhang Z L, Qu W J. Experimental Guidance of Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2003. pp 93-98. (in Chinese)
[17] Lowell C A, Tomlinson P T, Koch K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol, 1989, 90: 1394-1402.
doi: 10.1104/pp.90.4.1394 pmid: 16666942
[18] 张志芬, 付晓峰, 赵宝平, 刘俊青, 刘景辉. 腐植酸对重度干旱胁迫下燕麦叶片可溶性糖组分和内源激素的影响. 中国农业大学学报, 2018, 23(9): 11-20.
Zhang Z F, Fu X F, Zhao B P, Liu J Q, Liu J H. The effect of humic acid on the soluble sugar components and endogenous hormones of oat leaves under severe drought stress. J China Agric Univ, 2018, 23(9): 11-20. (in Chinese with English abstract)
[19] Chen L, Qiao Z H, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[20] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Study on the growth and development characteristics of super high- yielding japonica rice. Sci Agric Sin, 2006, 39: 1336-1345. (in Chinese with English abstract)
[21] 李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39: 101-109.
doi: 10.3724/SP.J.1006.2013.00101
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K. Material accumulation and transport characteristics of rice varieties with high nitrogen yield and high efficiency. Acta Agron Sin, 2013, 39: 101-109. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00101
[22] 钱薇, 刘媛, 栗孟飞, 杨德龙, 陈菁菁, 程宏波, 常磊, 柴守玺. 不同水分条件下小麦ILs群体花后不同器官蔗糖积累与转运的遗传特性. 麦类作物学报, 2017, 37: 1309-1317.
Qian W, Liu Y, Li M F, Yang D L, Chen J J, Cheng H B, Chang L, Chai S X. The genetic characteristics of sucrose accumulation and translocation in different organs of wheat ILs population under different water conditions. J Triticeae Crops, 2017, 37: 1309-1317. (in Chinese with English abstract)
[23] 刘雨晴, 孙娜娜, 高艳梅, 张震, 刘洋, 姚春生, 王志敏, 张英华. 不同基因型冬小麦穗粒数与粒重生理差异分析. 中国农业大学学报, 2021, 26(2): 1-15.
Liu Y Q, Sun N N, Gao Y M, Zhang Z, Liu Y, Yao C S, Wang Z M, Zhang Y H. Physiological difference analysis of spike number and grain weight of winter wheat with different genotypes. J China Agric Univ, 2021, 26(2): 1-15. (in Chinese with English abstract)
[24] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658-664.
Li Y G, Yu Z W, Jiang D, Yu S L. Study on the synthesis dynamics of sucrose and grain starch in winter wheat flag leaves and the related enzyme activities. Acta Agron Sin, 2001, 27: 658-664. (in Chinese with English abstract)
[25] 潘庆民, 于振文, 王月福. 小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解. 植物生理与分子生物学学报, 2002, 38: 235-240.
Pan Q M, Yu Z W, Wang Y F. Sucrose synthesis in flag leaves and sucrose degradation in wheat grains after flowering. J Plant Physiol Mol Biol, 2002, 38: 235-240. (in Chinese)
[26] 卢合全, 沈法富, 刘凌霄, 孙维方. 植物蔗糖合成酶功能与分子生物学研究进展. 中国农学通报, 2005, 21(7): 34-37.
Lu H Q, Shen F F, Liu L X, Sun W F. Research progress on the function and molecular biology of plant sucrose synthase. Chin Agric Sci Bull, 2005, 21(7): 34-37 (in Chinese with English abstract).
[27] 徐澜, 高志强, 安伟, 李彦良, 郭晨晨, 贾苏卿. 冬麦春播小麦发育进程中主茎叶片内源激素的变化. 核农学报, 2016, 30: 355-363.
doi: 10.11869/j.issn.100-8551.2016.02.0355
Xu L, Gao Z Q, An W, Li Y L, Guo C C, Jia S Q. Changes in the endogenous hormones of the main stem leaves during the development of winter wheat and spring sown wheat. Acta Agric Nucl Sin, 2016, 30: 355-363. (in Chinese with English abstract)
[28] 徐丽娜, 冯伟, 盛坤, 朱云集, 马冬云, 郭天财. 不同种植密度下兰考矮早八茎蘖叶片内源激素差异及其与分蘖成穗的关系. 作物学报, 2010, 36: 1596-1604.
doi: 10.3724/SP.J.1006.2010.01596
Xu L N, Feng W, Sheng K, Zhu Y J, Ma D Y, Guo T C. Differences of endogenous hormones in the leaves of Lankao Aizao 8 stems and tillers under different planting densities and their relationship with tillering and panicle formation. Acta Agron Sin, 2010, 36: 1596-1604. (in Chinese with English abstract)
[29] 宗学凤, 李芳红, 张建奎, 王三根. 蓝粒小麦植株发育进程中内源激素的变化. 西南大学学报(自然科学版), 2007, 29(12): 58-62.
Zong X F, Li F H, Zhang J K, Wang S G. Changes of endogenous hormones in the development of blue-grain wheat plants. J Southwest Univ (Nat Sci Edn), 2007, 29(12): 58-62. (in Chinese with English abstract)
[30] Li D Y, Zhang Z A, Zheng D J, Jiang L Y, Wang Y L. Comparison of net photosynthetic rate in leaves of soybean with different yield Levels. J Northeast Agric Univ, 2012, 19: 14-19.
[31] 陈四龙, 程增书, 宋亚辉, 王瑾, 刘义杰, 张朋娟, 李玉荣. 高产高油花生品种的光合与物质生产特征. 作物学报, 2019, 45: 276-288.
doi: 10.3724/SP.J.1006.2019.84050
Chen S L, Cheng Z S, Song Y H, Wang J, Liu Y J, Zhang P J, Li Y R. Photosynthetic and material production characteristics of high-yield and high-oil peanut varieties. Acta Agron Sin, 2019, 45: 276-288. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84050
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[5] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[6] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[7] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[8] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[9] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[10] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[11] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[12] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[13] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[4] 胡瑞波;田纪春;吕建华. 小麦类胡萝卜素含量的稳定性及其与黄碱面条色泽性状的相关性分析[J]. 作物学报, 2004, 30(06): 597 -601 .
[5] 李玲;潘瑞炽. PP333在水稻和花生可食部分及土壤中残留量的研究[J]. 作物学报, 1997, 23(06): 707 -711 .
[6] 王龙昌;王立祥;贾志宽;冯金侠. 旱作农区应变型种植制度决策系统的建立及效益[J]. 作物学报, 2003, 29(04): 557 -561 .
[7] 陈辉;范源洪;向余颈攻;蔡青;张亚平. 从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J]. 作物学报, 2003, 29(03): 379 -385 .
[8] 王洪刚;朱军;刘树兵. 利用细胞学和RAPD技术鉴定抗病小偃麦易位系[J]. 作物学报, 2001, 27(06): 886 -890 .
[9] 李秀菊;孟繁静. 大豆品种早12花序分化形成期间的内源植物激素变化[J]. 作物学报, 1997, 23(04): 446 -449 .
[10] 王化岑;刘万兴;刘万代;马元喜;王晨阳;鲁文锁;李九星. 超高产冬小麦根系生长动态与解剖学结构初步观察[J]. 作物学报, 1998, 24(06): 952 -956 .