作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2274-2284.doi: 10.3724/SP.J.1006.2022.14138
惠志明(), 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平*()
HUI Zhi-Ming(), XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping*()
摘要:
马铃薯熟性是由多基因控制的数量性状, 是我国不同栽培区划选择适宜品种的重要指标之一。本研究以晚熟品种中薯18号和早熟品种中薯5号及其F1分离群体为材料, 2018—2019年连续2年对“中薯18号(母本) × 中薯5号(父本)”杂交分离群体进行熟性评价, 从中筛选出极端晚熟和极端早熟的基因型各30个, 并分别构建极端晚熟和极端早熟基因组DNA混池。利用简化基因组2b-RAD (2b-restriction site-associated DNA)技术测序, 寻找差异标签开发出3个与熟性连锁的分子标记SCARA2-2、SCARA4-21和SCARA5-16, 3个分子标记联合使用对熟性分离群体子代进行验证, 晚、早熟表型符合率分别到达了87.5%和93.0%, 这些分子标记的开发和联合使用对辅助马铃薯熟性选择具有重要的参考价值。
[1] | 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990-1015. |
Xu J F, Jin L P. Analysis for maturity of progenies from potato cultivar Zhongshu 3. Sci Agric Sin, 2017, 50: 990-1015. (in Chinese with English abstract) | |
[2] | 孙慧生. 马铃薯育种学. 北京: 中国农业出版社, 2003. pp 30-59. |
Sun H S. Potato Breeding. Beijing: China Agriculture Press, 2003. pp 30-59. (in Chinese) | |
[3] | 徐建飞, 段绍光, 庞万福, 卞春松, 刘杰, 金黎平. 马铃薯品种中薯3号杂交后代熟性分析. 华北农学报, 2015, 30(增刊1): 92-96. |
Xu J F, Duan S G, Pang W F, Bian C S, Liu J, Jin L P. Analysis for maturity of progenies from potato cultivar Zhongshu 3. Acta Agric Boreali-Sin, 2015, 30(S1): 92-96. (in Chinese with English abstract) | |
[4] |
Mackerron D K L, Davies H V. Markers for maturity and senescence in the potato crop. Potato Res, 1986, 29: 427-436.
doi: 10.1007/BF02357908 |
[5] | Hvostova V V, Iacina I M. 马铃薯遗传学. 北京: 中国农业出版社, 1981. pp 280-283. |
Hvostova V V, Iacina I M. Potato Genetics. Beijing: China Agriculture Press, 1981. pp 280-283. (in Chinese) | |
[6] |
Kloosterman B, Abelenda J A, Gomez M M C, Oortwijn M, De boer J M, Kowitwanich K, Horvath B M, Van Eck H J, Smaczniak C, Prat S, Visser R G F, Bachem C W B. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495: 246-250.
doi: 10.1038/nature11912 |
[7] |
Bonierbale M W, Plaisted R L, Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120: 1095-1103.
doi: 10.1093/genetics/120.4.1095 pmid: 17246486 |
[8] |
Visker M H P W, Kerzer L C P, Van Eck H J, Jacobsen E, Colon L T, Struik P C. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet, 2003, 106: 317-325.
pmid: 12582858 |
[9] |
Li X, Xu J, Duan S, Zhang J, Bian C, Hu J, Li G, Jin L. Mapping and QTL analysis of early-maturity traits in tetraploid potato (Solanum tuberosum L.). Int J Mol Sci, 2018, 19: 3065.
doi: 10.3390/ijms19103065 |
[10] |
Malosetti M, Visser R G F, Celis-Gamboa C, van Eeuwijk F A. QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor Appl Genet, 2006, 113: 288-300.
pmid: 16791695 |
[11] |
Bradshaw J E, Hackett C A, Pande B, Waugh R, Bryan G J. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet, 2008, 116: 193-211.
doi: 10.1007/s00122-007-0659-1 pmid: 17938877 |
[12] |
Hackett C A, Bradshaw J E, Bryan G J. QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet, 2014, 127: 1885-1904.
doi: 10.1007/s00122-014-2347-2 |
[13] | Massa A N, Manriquew-Carpintero N C, Coombs J J, Zarka D G, Boone A E, Wirk W W, Hackett C A, Bryan G J, Douches D S. Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.). Genes Genom Genet, 2015, 5: 2357-2364. |
[14] |
Massa A N, Manrique-Carpintero N C, Coombs J, Haynes K G, Bethke P C, Brandt T L, Gupta S K, Yencho G C, Novy R G, Douches D S. Linkage analysis and QTL mapping in a tetraploid russet mapping population of potato. BMC Genet, 2018, 19: 87.
doi: 10.1186/s12863-018-0672-1 |
[15] | Jia L, Zhang B, Liu K, Zheng D, Wang X. Analysis of population genetic diversity of Cynoglossus cynoglossus based on 2b-RAD simplified genome sequencing. Fisher Res, 2017, 4: 125-133. |
[16] |
Blanco-Bercial L, Buchlin A. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus. Mol Ecol, 2016, 25: 1566-1580.
doi: 10.1111/mec.13581 pmid: 26857348 |
[17] |
Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics, 2018, 19: 18.
doi: 10.1186/s12864-017-4421-z |
[18] |
Seetharam A S, Stuart G W. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ, 2013, 1: e226.
doi: 10.7717/peerj.226 |
[19] | Dou J, Li X, Fu Q, Jiao W, Li Y, Li T, Wang Y, Hu X, Wang S, Bao Z. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci Rep, 2016, 6: 19244. |
[20] |
李兴翠, 李广存, 徐建飞, 段绍光, 卞春松, 庞万福, 刘杰, 金黎平. 四倍体马铃薯熟性连锁SCAR标记的开发与验证. 作物学报, 2017, 43: 821-828.
doi: 10.3724/SP.J.1006.2017.00821 |
Li X C, Li G C, Xu J F, Duan S G, Bian C S, Pang W F, Liu J, Jin L P. Development and verification of SCAR marker linked to maturity in tetraploid potato. Acta Agron Sin, 2017, 43: 821-828. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00821 |
|
[21] |
Oberhagemann P, Chatot-Balandras C, Schäfer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, GebhardT C. A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed, 1999, 5: 399-415.
doi: 10.1023/A:1009623212180 |
[22] |
Collins A, Milbourne D, RamsaY L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed, 1999, 5: 387-398.
doi: 10.1023/A:1009601427062 |
[23] |
Bradshaw J E, Pande B, Bryan G J, Hackett C A, McLean K, Stewart H E, Waugh R. Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics, 2004, 168: 983-995.
pmid: 15514069 |
[24] |
Visker M H P W, Heilersig H J B, Kodde L P, Van de Weg W E, Voorrips R E, Struik P C, Colon L T. Genetic linkage of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphytica, 2005, 143: 189-199.
doi: 10.1007/s10681-005-3444-8 |
[25] |
Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E. Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum L.) background. Theor Appl Genet, 2007, 115: 101-112.
pmid: 17468842 |
[26] |
Li J, Wang Y, Wen G, Li G, Li Z, Zhang R, Ma S, Zhou J, Xie C. Mapping QTL underlying tuber starch content and plant maturity in tetraploid potato. Crop J, 2019, 7: 261-272.
doi: 10.1016/j.cj.2018.12.003 |
[27] | 罗育, 黄春喜, 吴耀生, 蔡丹昭, 郭宏伟, 朱丹. 3种DNA分子标记法联合鉴别草珊瑚及其混伪品. 中草药, 2020, 51: 733-740. |
Luo Y, Huang C X, Wu Y S, Cai D Z, Guo H W, Zhu D. Molecular authentication of Sarcandra glabra and its adulterants using three DNA molecular markers. Chin Trad Herbal Drugs, 2020, 51: 733-740. (in Chinese with English abstract) | |
[28] | 黄艺宁. RAPD、ISSR分子标记联合鉴定毛木耳菌株的研究. 河南农业科学, 2020, 49(7): 118-125. |
Huang Y N. RAPD and ISSR molecular identification of Auricularia cornea Ehrenb. J Henan Agric Sci, 2020, 49(7): 118-125. (in Chinese with English abstract) |
[1] | 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870. |
[2] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[3] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[4] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[5] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[6] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[7] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[8] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[9] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[10] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[11] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[12] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[13] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[14] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[15] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
|