欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 821-832.doi: 10.3724/SP.J.1006.2023.21016

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响

高春华1,2(), 冯波1,*(), 李国芳3, 李宗新2, 李升东1, 曹芳1, 慈文亮4, 赵海军2   

  1. 1山东省农业科学院作物研究所 / 小麦玉米国家工程研究中心 / 农业农村部黄淮北部小麦生物学与遗传育种重点实验室 / 山东省小麦技术创新中心, 山东济南 250100
    2山东省农业科学院, 山东济南 250100
    3淄博市数字农业农村发展中心, 山东淄博 255000
    4山东省农业机械科学研究院, 山东济南 250100
  • 收稿日期:2022-02-22 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-17
  • 通讯作者: 冯波
  • 作者简介:E-mail: chunhuaaa009@163.com
  • 基金资助:
    山东省农业科技资金(园区产业提升工程)项目(2019YQ001);山东省重大科技创新项目(2020CXGC108052);国家重点研发计划项目(2018YFD0300600-1);山东省重点研发计划项目(2021LZGC009-4);山东省自然科学基金项目(ZR2019PEE047);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03-22)

Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis

GAO Chun-Hua1,2(), FENG Bo1,*(), LI Guo-Fang3, LI Zong-Xin2, LI Sheng-Dong1, CAO Fang1, CI Wen-Liang4, ZHAO Hai-Jun2   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize / Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-Huai River Plain, Ministry of Agriculture and Rural Affairs / Shandong Technology Innovation Center of Wheat, Jinan 250100, Shandong, China
    2Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    3Zibo Digital Agriculture and Rural Development Center, Zibo 255000, Shandong, China
    4Shandong Academy of Agricultural Machinery Sciences, Jinan 250100, Shandong, China
  • Received:2022-02-22 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-17
  • Contact: FENG Bo
  • Supported by:
    Shandong Agricultural Science and Technology Fund (Industrial Upgrading Project in the Park) Program(2019YQ001);Shandong Provincial Major Science and Technology Innovation Program(2020CXGC108052);National Key Research and Development Program of China(2018YFD0300600-1);Shandong Provincial Key Research and Development Program(2021LZGC009-4);Natural Science Foundation of Shandong Province(ZR2019PEE047);China Agriculture Research System of MOF and MARA(CARS-03-22)

摘要:

为探明氮肥对花后高温胁迫下小麦籽粒淀粉合成的响应机制, 明确氮肥缓解高温胁迫危害的生理机理及适宜运筹措施, 本研究于2018—2019年和2019—2020年在山东济南、济阳试验基地进行, 以不同耐热性小麦品种济麦44 (耐热型)和新麦26 (敏感型)为材料, 设2个温度水平(对照: CK; 花后10~16 d高温: H)和3个施氮量(N1: 180 kg hm-2; N2: 240 kg hm-2; N3: 300 kg hm-2), 研究了施氮量对花后高温胁迫后粒重、灌浆特性、蔗糖与淀粉合成及其相关酶活性影响。结果表明, 花后高温显著缩短2个品种各施氮处理的灌浆天数, 显著降低了籽粒最大灌浆速率、支链淀粉含量、总淀粉含量及支/直比值。花后高温胁迫下, 与180 kg hm-2和300 kg hm-2处理相比, 240 kg hm-2处理2个品种旗叶中蔗糖含量最高; 同时籽粒中直链淀粉、支链淀粉、总淀粉含量和粒重最高; 籽粒中蔗糖合成酶分解方向(SS-I)活性、可溶性淀粉合成酶(SSS)活性和淀粉分支酶(SBE)活性最高。花后高温胁迫和240 kg hm-2施氮量处理下, 济麦44旗叶中蔗糖合成酶合成方向(SS-II)和籽粒中蔗糖合成酶分解方向(SS-I)、可溶性淀粉合成酶(SSS)、淀粉分支酶(SBE)活性均显著高于新麦26; 济麦44旗叶中蔗糖含量、籽粒中淀粉含量和粒重显著高于新麦26。研究表明耐热性不同品种在适宜施氮量(240 kg hm-2)下能保持高温胁迫后较高的旗叶合成蔗糖能力和籽粒分解蔗糖能力, 维持高温胁迫下籽粒较高的淀粉合成底物供给能力, 适宜施氮量可以缓解高温胁迫对籽粒淀粉合成的抑制作用。合理施氮和选择耐热性强的品种是提高冬小麦花后高温胁迫后籽粒淀粉含量和缓解高温胁迫危害的一项应对措施。

关键词: 冬小麦, 施氮量, 花后高温, 蔗糖, 淀粉, 酶活性

Abstract:

The objective of this study is to investigate the response mechanism of nitrogen fertilizer to starch synthesis in wheat grains under high temperature stress after anthesis and to clarify the physiological mechanism and reasonable operation measures of nitrogen fertilizer to alleviate the damage of high temperature stress. The experiment was carried out in Jinan and Jiyang experimental station of Shandong Province on different nitrogen application rates (N1: 180 kg hm-2, N2: 240 kg hm-2, and N3: 300 kg hm-2), with heat resistant wheat variety JM44 and heat sensitive variety XM26 from 2018 to 2020, using an artificial greenhouse to warm up the air temperature for 7 days after anthesis as high temperature stress (H) and the field as control (CK). Grain filling rates, grain weight, sucrose, starch synthesis and related enzyme activities were analyzed. The results showed that the grain filling period was shortened, the maximum grain filling rate, amylopectin content, total starch contents, and the ratio of amylopectin to amylase were significantly reduced compared with the control caused by high temperature stress after anthesis. Compared with 180 kg hm-2 and 300 kg hm-2 treatments, the sucrose accumulation in flag leaves were found highest in 240 kg hm-2 treatment under high temperature stress. The contents of amylase, amylopectin, total starch, grain weight, the highest activity of sucrose synthase decomposition direction (SS-I), soluble starch synthase (SSS), and starch branching enzyme (SBE) in grains were also the highest in 240 kg hm-2 treatment under high temperature stress. The results also showed that under high temperature stress with nitrogen application rate of 240 kg hm-2 the activity of sucrose synthase synthetic direction (SS-II), and the activity of sucrose synthase decomposition direction (SS-I), the soluble starch synthase (SSS), and the starch branching enzyme (SBE) of grains in JM44 were higher than those in XM26, resulting in more sucrose content in flag leaves, higher grain weight, and more starch content of grains in JM44. The study showed that to reduce the inhibition on starch synthesis, the nitrogen application rate of 240 kg hm-2 could maintain higher level of sucrose synthesis in flag leaves and sucrose decomposition capacity in grains after high temperature stress. These results indicate that the suitable nitrogen application and selection resistance cultivars were a coping measure to increase the starch content and alleviating the harmful effects of high temperature stress after anthesis in winter wheat.

Key words: winter wheat, nitrogen application rate, high temperature after anthesis, sucrose, starch, enzyme activity

表1

试验处理设计水平"

温度
Temperature treatment
品种
Cultivar name
施氮量
Nitrogen application rate (kg hm-2)
对照CK 济麦44 Jimai 44 180 (N1) 240 (N2) 300 (N3)
新麦26 Xinmai 26 180 (N1) 240 (N2) 300 (N3)
高温胁迫High temperature stress 济麦44 Jimai 44 180 (N1) 240 (N2) 300 (N3)
新麦26 Xinmai 26 180 (N1) 240 (N2) 300 (N3)

图1

高温胁迫7 d期间对照和处理的小麦冠层平均温度 JN: 济南; JY: 济阳; CK: 对照; H: 高温胁迫。"

图2

氮肥对高温胁迫后籽粒粒重的影响 CK: 对照; H: 高温胁迫; N1: 180 kg hm-2; N2: 240 kg hm-2; N3: 300 kg hm-2。"

表2

氮肥对高温胁迫后籽粒灌浆参数的影响"

温度处理
Temperature treatments
施氮量
Nitrogen
application rate
2018-2019 2019-2020
Tmax
(d)
Vmax
(mg grain-1 d-1)
T1
(d)
R2 Tmax
(d)
Vmax
(mg grain-1 d-1)
T1
(d)
R2
新麦26 XM26
CK N1 17.88 1.61 39.17 0.995 16.98 1.54 40.47 0.997
N2 18.18 1.63 40.94 0.996 17.20 1.63 41.67 0.997
N3 17.55 1.63 42.46 0.997 18.00 1.76 43.21 0.995
H N1 13.90 0.95 34.53 0.999 13.29 0.86 35.68 0.998
N2 16.25 1.21 36.90 0.999 15.88 1.23 38.66 0.989
N3 13.87 0.99 36.31 0.997 14.92 1.01 37.68 0.998
济麦44 JM44
CK N1 16.45 1.77 41.79 0.994 16.67 1.79 41.18 0.991
N2 17.38 1.90 43.14 0.993 16.86 1.88 41.83 0.990
N3 16.04 1.89 44.64 0.992 17.00 1.82 44.30 0.994
H N1 14.33 1.00 38.97 0.992 12.61 0.94 38.37 0.993
N2 16.41 1.47 40.51 0.998 16.53 1.40 39.74 0.997
N3 14.67 1.01 39.72 0.995 15.71 1.04 39.35 0.991

图3

氮肥对高温胁迫后旗叶和籽粒蔗糖含量的影响 柱上不同小写字母表示相同施氮量下同一品种对照与高温胁迫间差异显著(P < 0.05); 柱上不同大写字母表示相同温条件下品种和施氮量处理间差异显著(P < 0.05)。误差线为标准差。处理同图2。"

图4

氮肥对高温胁迫后旗叶中蔗糖合成酶(SS)活性的影响 SS-I: 蔗糖合成酶分解方向; SS-II: 蔗糖合成酶合成方向。柱上不同小写字母表示相同施氮量下同一品种对照与高温胁迫间差异显著(P < 0.05); 柱上不同大写字母表示相同温度条件下品种和施氮量处理间差异显著(P < 0.05)。误差线为标准差。处理同图2。"

图5

氮肥对高温胁迫后籽粒中蔗糖合成酶(SS)活性的影响 SS-I: 蔗糖合成酶分解方向; SS-II: 蔗糖合成酶合成方向。柱上不同小写字母表示相同施氮量下同一品种对照与高温胁迫间差异显著(P < 0.05); 柱上不同大写字母表示相同温条件下品种和施氮量处理间差异显著(P < 0.05)。误差线为标准差。处理同图2。"

表3

氮肥对高温胁迫后小麦籽粒淀粉含量的影响"

温度处理
Temperature treatments
施氮量
Nitrogen application rate
直链淀粉含量
Amylose content
(%)
支链淀粉含量
Amylopectin content
(%)
总淀粉含量
Starch content
(%)
支/直比
Ratio of amylose to amylopectin
新麦26 XM26
CK N1 9.09±0.13 c 42.53±0.23 b 51.62±0.10 b 4.69±0.05 b
N2 13.78±0.11 b 47.54±1.82 a 61.32±1.70 a 3.52±0.04 d
N3 7.43±0.18 d 40.83±0.59 b 48.27±0.77 c 5.54±0.17 a
H N1 7.23±0.02 de 30.34±0.33 d 37.57±0.35 d 4.18±0.03 c
N2 16.76±0.016 a 34.50±0.25 c 51.25±0.24 b 2.07±0.01 e
N3 6.96±0.017 e 32.78±0.13 cd 39.74±0.15 d 4.72±0.02 b
济麦44 JM44
CK N1 9.41±0.04 c 47.49±0.02 b 56.90±0.06 b 5.05±0.24 b
N2 12.46±0.31 d 56.74±0.07 a 69.20±0.24 a 4.56±0.11 c
N3 7.71±0.26 d 47.00±0.31 b 54.71±0.05 b 6.12±0.18 a
H N1 7.31±0.16 d 37.71±1.12 d 45.02±0.96 c 5.08±0.04 b
N2 14.66±0.09 a 42.26±2.55 c 56.92±2.45 b 2.80±0.07 d
N3 5.96±0.25 e 30.01±0.39 e 35.96±0.63 d 5.08±0.24 b

图6

氮肥对高温胁迫后籽粒中SSS和GBSS活性的影响 SSS: 可溶性淀粉合成酶; GBSS: 结合态淀粉合成酶。柱上不同小写字母表示相同施氮量下同一品种对照与高温胁迫间差异显著(P < 0.05); 柱上不同大写字母表示相同温度条件下品种和施氮量处理间差异显著(P < 0.05)。误差线为标准差。处理同图2。"

图7

氮肥对高温胁迫后籽粒中SBE的影响 SBE: 淀粉分支酶。柱上不同小写字母表示相同施氮量下同一品种对照与高温胁迫间差异显著(P < 0.05); 柱上不同大写字母表示相同温度条件下品种和施氮量处理间差异显著(P < 0.05)。误差线为标准差。处理同图2。"

[1] 刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期短暂高温对小麦淀粉形成的影响. 作物学报, 2006, 32: 182-188.
Liu P, Guo W S, Pu H C, Feng C N, Zhu X K, Peng Y X. Effects of transient high temperature during grain filling period on starch formation in wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32: 182-188. (in Chinese with English abstract)
[2] 谭彩霞, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 花后不同时期高温处理下小麦籽粒的淀粉合成及相关酶基因表达. 核农学报, 2012, 26: 1311-1316.
doi: 10.11869/hnxb.2012.09.1311
Tan C X, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Effect of high temperature during different growth stage after anthesis on starch synthesis and related enzyme gene expression in winter grains. J Nucl Agric Sci, 2012, 26: 1311-1316. (in Chinese with English abstract)
[3] 闫素辉, 尹燕枰, 李文阳, 梁太波, 李勇, 邬云海, 王平, 耿庆辉, 戴忠民, 王振林. 灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响. 作物学报, 2008, 34: 1092-1096.
doi: 10.3724/SP.J.1006.2008.01092
Yan S H, Yin Y P, Li W Y, Liang T B, Li Y, Wu Y H, Wang P, Geng Q H, Dai Z M, Wang Z L. Effect of high temperature during grain filling on starch accumulation, starch granule distribution, and activities of related enzymes in wheat grains. Acta Agron Sin, 2008, 34: 1092-1096 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01092
[4] 王晨阳, 郭天财, 阎耀礼, 朱云集, 夏国军, 王化岑, 周继泽. 花后短期高温胁迫对小麦叶片光合性能的影响. 作物学报, 2004, 30: 88-91.
Wang C Y, Guo T C, Yan Y L, Zhu Y J, Xia G J, Wang H C, Zhou J Z. Effects of short post-anthesis high temperature stress on leaf photosynthetic potential in winter wheat (Triticum aestivum L.). Acta Agron Sin, 2004, 30: 88-91 (in Chinese with English abstract).
doi: 10.3724/SP.J.1095.2013.20024
[5] Jener C F. Starch synthesis in the kernel of wheat under high-temperature conditions. Aust J Plant Physiol, 1994, 21: 791-806.
[6] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44: 591-600.
Hu Y Y, Lu H F, Liu W X, Kang J, Ma G, Li S S, Chu Y Y, Wang C Y. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat. Acta Agron Sin, 2018, 44: 591-600. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00591
[7] 赵辉, 戴廷波, 荆奇, 姜东, 曹卫星, 陆玮, 田孝威. 灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响. 作物学报, 2006, 32: 423-429.
Zhao H, Dai T B, Jing Q, Jiang D, Cao W X, Lu W, Tian X W. Effects of high temperature during grain filling on key enzymes involved in starch synthesis in two wheat cultivars with different quality types. Acta Agron Sin, 2006, 32: 423-429. (in Chinese with English abstract)
[8] 代晓华, 康建宏, 邬雪婷. 花后不同时期高温对春小麦淀粉含量和产量的影响研究. 农业科学研究, 2013, 32(4): 5-12.
Dai X H, Kang J H, Wu X T. Impacts of the high temperature after the flowering period on the starch content and yield of the spring wheat. J Agric Sci, 2013, 32(4): 5-12. (in Chinese with English abstract)
[9] 敬海霞, 王晨阳, 郭天财, 张双利, 胡吉帮, 王永华. 花后高温胁迫对不同筋型小麦籽粒品质的影响. 河南农业科学, 2010, (6): 5-8.
Jing H X, Wang C Y, Guo T C, Zhang S L, Hu J B, Wang Y H. Effects of post-anthesis high temperature stress on grain quality of three wheat cultivars with different gluten strength. J Henan Agric Sci, 2010, (6): 5-8. (in Chinese with English abstract)
[10] 封超年, 郭文善, 施劲松, 彭永欣, 朱新开. 小麦花后高温对籽粒胚乳细胞发育及粒重的影响. 作物学报, 2000, 26: 399-405.
Feng C N, Guo W S, Shi J S, Peng Y X, Zhu X K. Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat. Acta Agron Sin, 2000, 26: 399-405. (in Chinese with English abstract)
[11] 杨晓娟, 居辉, 王治世, 郭安廷, 杨佑明. 花后高温和干旱对冬小麦光合、抗氧化特性及粒重的影响. 麦类作物学报, 2015, 35: 958-963.
Yang X J, Ju H, Wang Z S, Guo A T, Yang Y M. Effect of high temperature and drought after anthesis on photosynthesis, antioxidant properties and grain weight in winter wheat. J Triticeae Crops, 2015, 35: 958-963. (in Chinese with English abstract)
[12] 戴廷波, 赵辉, 荆奇, 姜东, 曹卫星. 灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响. 生态学报, 2006, 26: 3670-3676.
Dai T B, Zhao H, Jing Q, Jiang D, Cao W X. Effects of high temperature and water stress during grain filling on grain protein and starch formation in winter wheat. Acta Ecol Sin, 2006, 26: 3670-3676. (in Chinese with English abstract)
[13] Zhao H, Dai T, Jiang D, Cao W. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J Agron Crop Sci, 2008, 194: 47-54.
doi: 10.1111/j.1439-037X.2007.00283.x
[14] 姚仪敏, 王小燕, 陈建珍, 闫浩亮, 穆麒麟, 刘盼春, 田小海. 灌浆期增温对小麦籽粒结实及品质的双向效应及与施氮量的关系. 麦类作物学报, 2015, 35: 860-866.
Yao M Y, Wang X Y, Chen J Z, Yan H L, Mu Q L, Liu P C, Tian X H. Pros and cons effect of warming on wheat grain yield and quality during grain filling. J Triticeae Crops, 2015, 35: 860-866. (in Chinese with English abstract)
[15] 江文文, 尹燕枰, 王振林, 李勇, 杨卫兵, 彭佃亮, 杨东清, 崔正勇, 卢昆丽, 李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响. 作物学报, 2014, 40: 942-949.
Jiang W W, Yin Y P, Wang Z L, Li Y, Yang W B, Peng D L, Yang D Q, Cui Z Y, Lu K L, Li Y X. Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress. Acta Agron Sin, 2014, 40: 942-949. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00942
[16] 吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 施氮量基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007, 27: 734-739.
Wu C P, He M R, Zhang B, Zhang H H, Liu Y H. Effects of Nitrogen Dressing Ratios and Heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Bot Boreali- Occident Sin, 2007, 27: 734-739 (in Chinese with English abstract).
[17] 刘永环, 贺明荣, 王晓英, 张洪华. 不同施氮量基追比例对高温胁迫下小麦籽粒产量和品质的影响. 生态学报, 2009, 29: 5930-5935.
Liu Y H, He M R, Wang X Y, Zhang H H. The effects of top -dressing to basal nitrogen ratios on grain yield and quality of winter wheat under heat stresses during grain filling. Acta Ecol Sin, 2009, 29: 5930-5935. (in Chinese with English abstract)
[18] 慕宇, 朱荣, 孙立影, 康建宏. 施氮量基追比对花后高温胁迫下春小麦淀粉形成的影响. 干旱地区农业研究, 2017, 35(5): 208-215.
Mu Y, Zhu R, Sun L Y, Kang J H. Effect of nitrogen dressing ratios and high temperature on the formation of starch after anthesis of spring wheat. Agric Res Arid Areas, 2017, 35(5): 208-215. (in Chinese with English abstract)
[19] 孙建波, 徐灿, 朱荣, 吴宏亮, 康建宏. 施氮时期对花后高温胁迫下春小麦淀粉形成的影响. 西南农业学报, 2018, 31: 1163-1170.
Sun J B, Xu C, Zhu R, Wu H L, Kang J H. Effects of nitrogen time on starch formation of spring wheat at high temperature after anthesis. Southwest China J Agric Sci, 2018, 31: 1163-1170. (in Chinese with English abstract)
[20] 姜丽娜, 李冬芬, 李春喜, 邵云. 小麦蔗糖合成酶和腺苷二磷酸葡萄糖焦磷酸化酶的研究进展. 作物杂志, 2008, (6): 11-15.
Jiang L N, Li D F, Li C X, Shao Y. Recent advances on wheat sucrose synthase and ADP-glucose pyrophosphorylase. Crops, 2008, (6): 11-15. (in Chinese with English abstract)
[21] 陈洋, 赵宏伟. 氮素用量对春玉米穗位叶蔗糖合成关键酶活性的影响. 玉米科学, 2008, 16(1): 115-118.
Chen Y, Zhao H W. Effect of nitrogen application on activities of key enzymes of sucrose synthesis in the leaf located near the ear of spring maize. J Maize Sci, 2008, 16(1): 115-118. (in Chinese with English abstract)
[22] 赵宏伟, 邹德堂, 马凤鸣. 施氮量对不同品种春玉米穗位叶蔗糖合成的影响. 中国农学通报, 2005, 21(10): 196-199.
Zhao H W, Zou D T, Ma F M. Effect of different nitrogen utilization on sucrose synthesizing in spike leaf of different spring maize. Chin Agric Sci Bull, 2005, 21(10): 196-199. (in Chinese with English abstract)
[23] 杨毅, 李昱, 康建宏, 刘萍. 花后高温胁迫对春小麦籽粒淀粉合成的影响. 麦类作物学报, 2015, 35: 1535-1541.
Yang Y, Li Y, Kang J H, Liu P. Effect of heat stress after anthesis on starch synthesis in spring wheat. J Triticeae Crops, 2015, 35: 1535-1541 (in Chinese with English abstract)
[24] 卢红芳, 石向军, 胡阳阳, 王晨阳, 王家瑞, 刘卫星, 马耕, 康娟. 灌浆期高温与干旱对小麦籽粒淀粉合成相关酶基因表达的影响. 麦类作物学报, 2020, 40: 517-525.
Lu H F, Shi X J, Hu Y Y, Wang C Y, Wang J R, Liu W X, Ma G, Kang J. Response of enzymes involved in starch biosynthesis to high temperature and drought stress during the grain filling stage. J Triticeae Crops, 2020, 40: 517-525. (in Chinese with English abstract)
[25] 孙立影, 苏玮, 吴宏亮, 李昱, 王雪, 康建宏. 花后不同时期高温对春小麦淀粉形成的影响. 农业科学研究, 2015, 36(1): 54-60.
Sun L Y, Su W, Wu H L, Li Y, Wang X, Kang J H. Effects of high temperature at different stages after anthesis on starch formation in spring wheat. J Agric Sci, 2015, 36(1): 54-60. (in Chinese)
[26] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23: 2031-2039.
Li S Q, Shao M A, Li Z Y, Wu W M, Zhang X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Bot Boreali-Occident Sin, 2003, 23: 2031-2039. (in Chinese with English abstract)
[27] 何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985. pp 144, 293.
He Z F. Analysis Technique for Grain Quality in Cereals and Oils. Beijing: Agriculture Press, 1985. pp 144, 294. (in Chinese)
[28] Sebková V, Unger C, Hardegger M, Sturm A. Biochemical, physiological, and molecular characterization of sucrose synthase from daucuscarota. Plant Physiol, 1995, 108: 75-83.
pmid: 7784526
[29] Ruty T W, Kerr P S, Huber S C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol, 1983, 73: 428-433.
doi: 10.1104/pp.73.2.428 pmid: 16663233
[30] Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 56: 833-839.
[31] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒至白形成中作用的研究. 作物学报, 1997, 23: 338-344.
Li T G, Shen B, Chen N, Luo Y K. Effect of Q-enzyme on the chalkiness formation of rice grain. Acta Agron Sin, 1997, 23: 338-344. (in Chinese with English abstract)
[32] 高春华, 冯波, 曹芳, 李升东, 王宗帅, 张宾, 王峥, 孔令安, 王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响. 中国农业科学, 2020, 53: 4365-4375.
Gao C H, Feng B, Cao F, Li S D, Wang Z S, Zhang B, Wang Z, Kong L A, Wang F H. Effects of nitrogen application rate on assimilate accumulation, transportation and grain yield in wheat under high temperature stress after anthesis. Sci Agric Sin, 2020, 53: 4365-4375. (in Chinese with English abstract)
[33] Santiveri F, Royo C, Romagosa I. Patterns of grain filling of spring and winter hexaploid triticales. Eur J Agron, 2002, 16: 219-230.
doi: 10.1016/S1161-0301(01)00127-7
[34] Gibson L R, Paulsen G M. Yield components of what grown under high temperature stress during reproductive growth. Crop Sci, 1999, 39: 1841-1846.
doi: 10.2135/cropsci1999.3961841x
[35] Viswanathan C, Khanna C R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grains weight stability. J Agron Crop Sci, 2001, 186: 1-7.
doi: 10.1046/j.1439-037x.2001.00432.x
[36] Stone P J, Nicolas M E. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance: I. Grain growth. Aust J Plant Physiol, 1995, 22: 927-934.
[37] Dias A S, Lidon F C. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J Agron Crop Sci, 2009, 195: 137-147.
doi: 10.1111/j.1439-037X.2008.00347.x
[38] Yin N X, Guo W S, Spiertz H J. A quantitative approach to characterizes sink-source relationships during grain filling in contrasting wheat genotypes. Field Crops Res, 2009, 114: 119-126.
doi: 10.1016/j.fcr.2009.07.013
[39] 刘霞, 尹燕枰, 贺明荣, 王振林. 播期对小麦品种藁城8901籽粒淀粉合成相关酶活性及淀粉组分积累的影响. 作物学报, 2006, 36: 1065-1070.
Liu X, Yin Y P, He M R, Wang Z L. Effects of sowing date on activities of enzymes involved in grain starch synthesis and starch component accumulation in wheat cultivar Gaocheng 8901. Acta Agron Sin, 2006, 36: 1065-1070. (in Chinese with English abstract)
[40] 石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响. 植物生态学报, 2011, 35: 769-778.
doi: 10.3724/SP.J.1258.2011.00769
Shi H Q, Gong Y H, Zhang D W. Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis. Chin J Plant Ecol, 2011, 35: 769-778. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2011.00769
[41] 陆伟婷. 冬小麦产量和品质对花前夜间增温及不同施氮量的响应. 南京农业大学硕士学位论文, 江苏南京, 2017.
Lu W T. Response Characteristics on Different Nitrogen Rates under Night Warming of Grain Yield and Quality of Winter Wheat. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017. (in Chinese with English abstract)
[42] 赵晶晶, 姚珊, 李昱, 康建宏, 吴宏亮, 许强. 花后干旱对春小麦籽粒淀粉含量及淀粉形成关键酶活性的影响. 干旱地区农业研究, 2015, 33(3): 104-110.
Zhao J J, Yao S, Li Y, Kang J H, Wu H L, Xu Q. Effects of drought on the starch contents and activities of key enzymes after anthesis in spring wheat grains. Agric Res Arid Areas, 2015, 33(3): 104-110. (in Chinese with English abstract)
[43] 谭彩霞, 封超年, 陈静, 郭静, 郭文善, 朱新开, 李春燕, 彭永欣. 作物淀粉合成关键酶及其基因表达的研究进展. 麦类作物学报, 2008, 28: 912-919.
Tan C X, Feng C N, Chen J, Guo J, Guo W S, Zhu X H, Li C Y, Peng Y X. Progress on key enzymes involved in crop starch synthesis and their gene expression. J Triticeae Crops, 2008, 28: 912-919. (in Chinese with English abstract)
[44] 吴宏亮, 康建宏, 姚珊, 李昱, 倪欢. 花后高温干旱对春小麦淀粉形成的影响. 新疆农业科学, 2013, 50: 1974-1984.
Wu H L, Kang J H, Yao S, Li Y, Ni H. Effect of high temperature and drought on the formation of starch after flowering of spring wheat. Xinjiang Agric Sci, 2013, 50: 1974-1984. (in Chinese with English abstract)
[45] Rachana D, Himanshu P, Shivdhar S, Bidisha C, Amod K T, Ram K F. Impact of sowing dates on terminal heat tolerance of different wheat (Triticum aestivum L.) cultivars. Natl Acad Sci Lett, 2019, 42: 445-449.
doi: 10.1007/s40009-019-0786-7
[46] Sofield I, Evans L T, Cook M G, Wardlaw I F. Factors influencing the rate and duration of grain filling in wheat. Aust J Plant Physiol, 1977, 4: 785-797.
[1] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[2] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[3] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[4] 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718.
[5] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[6] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[7] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[8] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[9] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[10] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[11] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[12] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[13] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[14] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[15] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .