欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2503-2514.doi: 10.3724/SP.J.1006.2024.31075

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦HvMBF1c耐盐机制分析

湛潇潇1,2(), 冯举伶1,2, 张震欢1,3, 张宏1,2, 汪军成1,2, 李葆春1,3, 杨轲1,2, 司二静1,2, 孟亚雄1,2, 马小乐1,2, 王化俊1,2, 姚立蓉1,2,*()   

  1. 1省部共建干旱生境作物学国家重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学农学院, 甘肃兰州 730070
    3甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2023-11-30 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-11
  • 通讯作者: *姚立蓉, E-mail: ylr0384@163.com
  • 作者简介:E-mail: 1363472842@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(大麦青稞, CARS-05-03B-03);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05-03B-03);国家自然科学基金项目(30771331);国家自然科学基金项目(32160496);甘肃农业大学学生科研训练计划(202301047);甘肃农业大学学生科研训练计划(202210733008);甘肃农业大学学生科研训练计划(S202210733003);甘肃省青年科技基金计划(20JR5RA010);甘肃省教育厅创新基金(2021A-055);甘肃省教育厅产业支撑计划项目(2021CYZC-12)

Salt tolerance analysis of HvMBF1c in barley

ZHAN Xiao-Xiao1,2(), FENG Ju-Ling1,2, ZHANG Zhen-Huan1,3, ZHANG Hong1,2, WANG Jun-Cheng1,2, LI Bao-Chun1,3, YANG Ke1,2, SI Er-Jing1,2, MENG Ya-Xiong1,2, MA Xiao-Le1,2, WANG Hua-Jun1,2, YAO Li-Rong1,2,*()   

  1. 1State Key Laboratory of Crop Science in Arid Habitat Jointly Established by the Ministry of Province and Ministry of Finance / Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Gansu Province, Lanzhou 730070, Gansu, China
    2Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-11-30 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-11
  • Contact: *E-mail: ylr0384@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Barley, CARS-05-03B-03);China Agriculture Research System of MOF and MARA(CARS-05-03B-03);National Natural Science Foundation of China(30771331);National Natural Science Foundation of China(32160496);Gansu Agricultural University Student Research Training Program(202301047);Gansu Agricultural University Student Research Training Program(202210733008);Gansu Agricultural University Student Research Training Program(S202210733003);Gansu Youth Science and Technology Fund Program(20JR5RA010);Innovation Fund of Education Department of Gansu Province(2021A-055);Industry Support Plan of Education Department of Gansu Province(2021CYZC-12)

摘要:

大麦HvMBF1c基因参与调控植物盐胁迫表达, 为探究其对盐胁迫的响应模式, 本文对大麦HvMBF1基因进行生物信息学分析, 并以中川大麦(耐盐型)、GN18 (盐敏感型)及WT与转HvMBF1c基因拟南芥为材料, 分别取200 mmol L-1 NaCl胁迫0 h、6 h、12 h、24 h、48 h及72 h样品, 对其进行qRT-PCR分析和生理指标的测定。 结果显示, 大麦HvMBF1c基因与小麦TaMBF1c亲缘关系最近, 位于7H染色体上。HvMBF1c的外显子比HvMBF1aHvMBF1b的大, 且HvMBF1aHvMBF1b两者具有典型的motif 4结构域, 而HvMBF1c基因具有独特的motif 5结构域。HvMBF1c基因的启动子序列含有光响应、根特定调节元件和缺氧特异性诱导增强元件, 与小麦2号、3号和7号染色体存在同源性。qRT-PCR分析表明, 随着盐处理时间的延长, 大麦HvMBF1c基因在2份种质材料苗期、拔节期、抽穗期和灌浆期的表达量呈上升趋势, 且中川大麦中该基因的表达量高于GN18中的表达量; 转HvMBF1c拟南芥中其表达量随着盐处理时间的延长而升高。盐胁迫下, 中川大麦苗期、拔节期、抽穗期及灌浆期的SOD、POD、CAT、MDA和可溶性蛋白低于GN18, 转基因拟南芥中各生理指标的变化量低于WT。本研究结果为进一步探索HvMBF1c的功能提供参考。

关键词: 大麦, HvMBF1c, 生理指标, 共线性分析, 表达量

Abstract:

The HvMBF1c gene in barley is implicated in the plant’s response to salt stress. To investigate the HvMBF1c response mechanism to salt stress, we conducted bioinformatics analysis of the HvMBF1 gene, qRT-PCR analysis, and physiological index determination in Nakagawa barley (salt-tolerant type), GN18 (salt-sensitive type), wild-type (WT) and transgenic HvMBF1c Arabidopsis thaliana treated with 200 mmol L-1 NaCl for 0, 6, 12, 24, 48, and 72 hours. The results showed that the barley HvMBF1c gene is closely related to the wheat TaMBF1c gene, and is located on chromosome 7H. The exon of HvMBF1c is larger than those of HvMBF1a and HvMBF1b, with HvMBF1a and HvMBF1b containing a typical motif 4 domain, while the HvMBF1c gene has a unique motif 5 domain. The promoter sequence of the HvMBF1c gene includes photoreactive, root-specific regulatory elements, and hypoxia-specific inducible enhancing elements, homologous to wheat chromosomes 2, 3, and 7. qRT-PCR analysis revealed significant upregulation of HvMBF1c expression in two barley genotypes at the seedling, jointing, heading, and filling stages, with higher expression in Nakagawa barley compared to GN18 as salt treatment duration increased. Similarly, the expression of HvMBF1c in Arabidopsis thaliana also increased with prolonged salt treatment time. Physiological indices of Nakagawa barley at each growth stage were lower than those in GN18, and transgenic Arabidopsis exhibited lower indices compared to WT under different salt stress conditions. These findings provide a foundation for further exploration of the HvMBF1c gene function.

Key words: barley, HvMBF1c, physiological indicators, collinearity analysis, the extension

表1

引物序列及用途"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
HvMBF1c-qF
HvMBF1c-qR
HvActin-F
HvActin-R
CATCCAGAAGGCTCGCGT
CTCTCGTACTCCTGCACCAC
AAGCAGCCAGAATGTACAGCGAGAAC
GGTACAGACCAGCAAAGCCAGAAATG
荧光定量PCR
Fluorescence quantitative PCR
内参基因引物
Internal reference gene primer

图1

大麦、小麦、水稻、玉米和拟南芥中MBF1基因家族系统发育进化树 Hv: 大麦; Ta: 小麦; Os: 水稻; Zm: 玉米; At: 拟南芥。"

图2

大麦HvMBF1基因家族成员在大麦染色体上的分布"

图3

大麦HvMBF1基因家族成员基因结构 UTR: 非翻译区; CDS: 编码区序列。"

图4

大麦HvMBF1基因家族成员保守基序 Motif: 保守基序。"

图5

大麦HvMBF1基因保守基序序列Logo"

图6

大麦HvMBF1基因启动子顺式作用元件"

图7

大麦与小麦HvMBF1基因共线性分析"

图8

盐胁迫下大麦各个时期和拟南芥HvMBF1c表达量 不同字母表示差异水平显著(P < 0.05)。"

图9

盐胁迫下大麦SOD、POD、MDA、CAT和可溶性蛋白活性变化 不同字母表示差异水平显著(P < 0.05)。"

图10

盐胁迫下拟南芥SOD、POD、MDA、CAT和可溶性蛋白活性变化 不同字母表示差异水平显著(P < 0.05)。"

[1] 杨建明, 沈秋泉, 汪军妹, 朱靖环. 我国大麦生产、需求与育种对策. 大麦科学, 2003, (1): 1-6.
Yang J M, Shen Q Q, Wang J M, Zhu J H. Barley production, demand and breeding in China. Barley Sci, 2003, (1): 1-6 (in Chinese with English abstract).
[2] 李颖波, 郭桂梅, 刘成洪, 何婷, 高润红, 徐红卫, 陈志伟, 陆瑞菊, 黄剑华. 大麦HvLEC1基因的克隆及其表达特征分析. 植物遗传资源学报, 2016, 17: 732-737.
doi: 10.13430/j.cnki.jpgr.2016.04.019
Li Y B, Guo G M, Liu C H, He T, Gao R H, Xu H W, Chen Z W, Lu R J, Huang J H. Cloning and expression characterization of HvLEC1 gene in barley. J Plant Genet Resour, 2016, 17: 732-737 (in Chinese with English abstract).
[3] Hayes S, Pantazopoulou C K, Gelderen K, Reinen E, Tween A L, Sharma A, Vries M, Prat S, Schuurink R C, Testerink C, Pierik R. Soil salinity limits plant shade avoidance. Curr Biol, 2019, 29: 1669-1676.
doi: S0960-9822(19)30340-9 pmid: 31056387
[4] Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol, 2021, 19: 173.
doi: 10.1186/s43141-021-00274-4 pmid: 34751850
[5] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45: 837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin, 2008, 45: 837-845 (in Chinese with English abstract).
[6] 余玲, 王彦荣, 孙建华. 野大麦种子萌发条件及抗逆性研究. 草业学报, 1999, 8(1): 50-57.
Yu L, Wang Y R, Sun J H. Study on germination conditions and stress resistance of wild barley seeds. Acta Prat Sin, 1999, 8(1): 50-57 (in Chinese with English abstract).
[7] 李瑞芬, 王雪青, 王宏芝, 魏建华. 野大麦耐盐适应性反应机制的研究. 中国农业科学, 2006, 39: 2459-2466.
Li R F, Wang X Q, Wang H Z, Wei J H. Study on the adaptive response mechanism of wild barley salt tolerance. Chin Agric Sci, 2006, 39: 2459-2466 (in Chinese with English abstract).
[8] 王雪青, 张俊文, 魏建华, 王宏芝, 李瑞芬. 盐胁迫下野大麦耐盐生理机制初探. 华北农学报, 2007, 22: 17-21.
doi: 10.3321/j.issn:1000-7091.2007.01.005
Wang X Q, Zhang J W, Wei J H, Wang H Z, Li R F. Physiological mechanism of salt tolerance in wild barley under salt stress. Acta Agric Boreali-Sin, 2007, 22: 17-21 (in Chinese with English abstract).
[9] 赵勇, 马雅琴, 翁跃进. 盐胁迫下小麦甜菜碱和脯氨酸含量变化. 植物生理与分子生物学学报, 2005, 31: 103-106.
Zhao Y, Ma Y Q, Weng Y J. Changes of betaine and proline content in wheat under salt stress. J Plant Physiol Mol Biol, 2005, 31: 103-106 (in Chinese with English abstract).
[10] 王正凤. 内生真菌对野大麦耐盐性影响的研究. 兰州大学硕士学位论文, 甘肃兰州, 2009.
Wang Z F. Study on the Effect of Endophytic Fungi on Salt Tolerance of Wild Barley. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2009 (in Chinese with English abstract).
[11] Hussain G, Al-Jaloud A, Al-Shammary S, Karimulla S, Al-Aswad S. Effect of saline irrigation on germination and growth parameters of barley (Hordeum vulgare L.) in a pot experiment. Agric Water Manag, 1997, 34: 125-135.
[12] 张寒冰. 大麦S-腺苷甲硫氨酸合成酶HvSAMS2基因的克隆及耐盐性功能分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Zhang H B. Cloning and Salt Tolerance Function Analysis of S-Adenosylmethionine Synthetase HvSAMS2Gene in Barley. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[13] 朱娟. 大麦耐盐性相关基因的发掘与定位研究. 扬州大学博士学位论文, 2021.
Zhu J. Discovery and Localization of Genes Related to Barley Salt Tolerance. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[14] Alavilli H, Lee H, Park M, Lee B H. Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Front Plant Sci, 2017, 8: 1206.
doi: 10.3389/fpls.2017.01206 pmid: 28744295
[15] 秦丹丹, 许甫超, 董静, 葛双桃, 李梅芳. 大麦 MBF1基因的电子克隆与生物信息学分析. 湖北农业科学, 2014, 53: 5276-5281.
Qin D D, Xu F C, Dong J, Ge S T, Li M F. Electronic cloning and bioinformatics analysis of MBF1 gene in barley. Hubei Agric Sci, 2014, 53: 5276-5281 (in Chinese with English abstract).
[16] 冯举伶, 汪军成, 姚立蓉, 司二静, 杨轲, 孟亚雄, 马小乐, 李葆春, 赖勇, 尚勋武, 王化俊. 大麦HvMBF1c克隆及其响应盐胁迫的表达模式研究, 植物遗传资源学报, 2022, 23: 1175-1186.
doi: 10.13430/j.cnki.jpgr.20211122002
Feng J L, Wang J C, Yao L R, Si E J, Yang K, Meng Y X, Ma X L, Li B C, Lai Y, Shang X W, Wang H J. Expression pattern of barley HvMBF1c clone and its response to salt stress. J Plant Genet Resour, 2022, 23: 1175-1186 (in Chinese with English abstract)
[17] 冯举伶. 大麦盐胁迫应答基因HcMBF1c的克隆及其表达分析. 甘肃农业大学硕士学位论文, 甘肃兰州, 2022.
Feng J L. Cloning and Expression Analysis of HcMBF1c Response Gene in Barley Salt Stress. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2022 (in Chinese with English abstract).
[18] 刘畅, 杜羽晨, 李宁辉, 陆霄光, 赵烈, 付连双, 刘鑫, 刘君, 王晓楠. 不同抗寒性小麦品种生长点发育进程及生理指标差异分析. 麦类作物学报, 2023, 43: 721-728.
Liu C, Du Y C, Li N H, Lu X G, Zhao L, Fu L S, Liu X, Liu J, Wang X N. Analysis of the development process of growth points and physiological indexes of different cold-tolerant wheat cultivars. J Triticeae Crops, 2023, 43: 721-728 (in Chinese with English abstract).
[19] Zhang L, Wang Y, Zhang Q, Jiang Y, Zhang H, Li R. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. Plant Mol Biol, 2020, 102: 1-17.
doi: 10.1007/s11103-019-00926-7 pmid: 31655970
[20] Zou L, Yu B, Ma X L, Cao B, Chen G, Chen C, Lei J. Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese kale. Int J Mol Sci, 2019, 20: 5637.
[21] Di Mauro M F, Iglesias M J, Arce D P, Valle E M, Arnold R B, Tsuda K, Yamazaki K, Casalongué C A, Godoy A V. MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signal Behav, 2012, 7: 188-192.
[22] Tsuda K, Yamazaki K. Structure and expression analysis of three subtypes of Arabidopsis MBF1genes. Biochim Biophys Acta, 2014, 1680: 1-10.
[23] 曹志琛, 吴娴, 汪德州, 柳珊, 杨慧玉, 郝小聪, 房兆峰, 朱文根, 王伟伟, 王小燕, 唐益苗. 小麦多蛋白桥梁因子基因 TaMBF1c的克隆与表达分析. 麦类作物学报, 2021, 41: 391-400.
Cao Z C, Wu X, Wang D Z, Liu S, Yang H Y, Hao X C, Fang Z F, Zhu W G, Wang W W, Wang X Y, Tang Y M. Cloning and expression analysis of TaMBF1c in wheat polyprotein bridge factor gene. J Triticeae Crops, 2021, 41: 391-400 (in Chinese with English abstract).
[24] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z, Li Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9: 432.
[25] 李小冬, 尚以顺, 武语迪, 王学敏, 熊先勤, 陈光吉, 孙方, 张文, 蔡一鸣. 紫花苜蓿 MsMBF1c基因在拟南芥中表达提高转基因植株的耐热性. 草业学报, 2019, 28: 187-198.
doi: 10.11686/cyxb2018739
Li X D, Shang Y S, Wu Y D, Wang X M, Xiong X Q, Chen G J, Sun F, Zhang W, Cai Y M. Expression of alfalfa MsMBF1c gene in Arabidopsis enhances heat tolerance of transgenic plants. Acta Prat Sin, 2019, 28: 187-198 (in Chinese with English abstract).
[26] 曹兴, 郭尚敬, 高祥斌, 吕福堂, 隋娟娟, 穆红梅, 吴泽, 义鸣放, 张秀省. 百合转录辅激活因子LlMBF1c基因的克隆与表达分析. 江苏农业学报, 2018, 34: 1120-1127.
Cao X, Guo S J, Gao X B, Lyu F T, Sui J J, Mu H M, Wu Z, Yi M F, Zhang X S. Cloning and expression analysis of transcription coactivator LlMBF1c gene in lily. Jiangsu J Agric Sci, 2018, 34: 1120-1127 (in Chinese with English abstract).
[27] 刘红. 大豆MBF1转录辅激活因子基因的克隆及遗传转化. 山东农业大学硕士学位论文, 山东泰安, 2015.
Liu H. Cloning and Genetic Transformation of MBF1Transcription Coactivator Gene in Soybean. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract).
[28] Yu R M, Suo Y Y, Yang R, Chang Y N, Tian T, Song Y J, Wang H J, Wang C, Yang R J, Liu H L, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via its primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. Plant Sci, 2021, 307: 110877.
[29] Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot, 2009, 60: 3891-3908.
doi: 10.1093/jxb/erp234 pmid: 19628571
[30] Zhao Q, He L, Wang B, Liu Q, Pan Y, Zhang F, Jiang B, Zhang L. Overexpression of a multiprotein bridging factor 1 gene DgMBF1 improves the salinity tolerance of chrysanthemum. Int J Mol Sci, 2019, 20: 2453.
[31] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应. 山东农业科学, 2020, 52: 33-37.
Fu R, Zhang H Y, Liang X Y, Gu Y Y, Xing Y F, Song Y J, Li M, Li R X, Wang X Y, Guo H E. Physiological response of dandelion to NaCl monosalt and seawater composite salt stress. Shandong Agric Sci, 2020, 52: 33-37 (in Chinese with English abstract).
[32] 李尉霞, 齐军仓, 石国亮, 王鹏, 曹连莆. 大麦苗期耐盐性生理指标的筛选. 石河子大学学报(自然科学版), 2007, 25: 23-26.
Li W X, Qi J C, Shi G L, Wang P, Cao L P. Selection of the salt-tolerance physiological parameters of barley seedling. J Shihezi Univ (Nat Sci), 2007, 25: 23-26 (in Chinese with English abstract).
[33] 黄爱兰, 陈晓嫚, 曹凤红, 胡静. 盐胁迫下黑玉米发芽期间各生理指标和GABA含量变化. 长春师范大学学报, 2020, 39: 134-138.
Huang A L, Chen X M, Cao F H, Hu J. Changes of physiological indexes and GABA content during germination of black maize under salt stress. J Changchun Norm Univ, 2020, 39: 134-138 (in Chinese with English abstract).
[34] 刘建巍, 朱宏. 盐胁迫下小麦种子萌发及生理指标的测定. 哈尔滨师范大学自然科学学报, 2014, 30: 133-136.
Liu J W, Zhu H. Determination of seed germination and physiological indexes of wheat under salt stress. Nat Sci J Harbin Norm Univ, 2014, 30: 133-136 (in Chinese with English abstract).
[1] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[2] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[3] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[4] 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697.
[5] 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析[J]. 作物学报, 2022, 48(11): 2733-2748.
[9] 郭宝健, 王爽, 吕超, 王菲菲, 许如根. HvLBD19基因对大麦不定根发育的调控[J]. 作物学报, 2022, 48(10): 2435-2442.
[10] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[11] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[12] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[13] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[14] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[15] 李晶岚,陈鑫欣,石翠翠,刘方惠,孙静,葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!