欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3144-3154.doi: 10.3724/SP.J.1006.2024.43017

• 研究简报 • 上一篇    下一篇

玉米突变体caspl2b2的耐盐特性评价及转录组分析

张锦辉1(), 肖姿仪1, 李旭华3, 张明3, 贾春兰3, 潘振远2,*(), 邱法展1,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室 / 湖北洪山实验室, 湖北武汉 430070
    2石河子大学农学院 / 绿洲生态农业兵团重点实验室, 新疆石河子 832003
    3山东登海种业股份有限公司, 山东莱州 261448
  • 收稿日期:2024-04-20 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-23
  • 通讯作者: *潘振远, E-mail: panzhenyuandawood@163.com; 邱法展, E-mail: qiufa
  • 作者简介:E-mail: 1907339567@qq.com
  • 基金资助:
    国家自然科学基金项目(U2106230);山东省重点研发计划项目(2022CXPT014)

Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2

ZHANG Jin-Hui1(), XIAO Zi-Yi1, LI Xu-Hua3, ZHANG Ming3, JIA Chun-Lan3, PAN Zhen-Yuan2,*(), QIU Fa-Zhan1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
    2College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecological Agriculture Corps, Shihezi 832003, Xinjiang, China
    3Shandong Denghai Seed Industry Co., Ltd, Laizhou 261448, Shandong, China
  • Received:2024-04-20 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-23
  • Contact: *E-mail: panzhenyuandawood@163.com; E-mail: qiufa
  • Supported by:
    National Natural Science Foundation of China(U2106230);Key Research and Development Program of Shandong Province(2022CXPT014)

摘要:

盐胁迫敏感突变体是研究作物耐盐遗传基础和分子机制的重要遗传材料。本研究以自交系LY8405和突变体caspl2b2为材料, 开展正常生长、盐胁迫条件下苗期表型鉴定和生理生化指标测定分析。结果表明,与LY8405相比, 盐胁迫下caspl2b2存活率显著降低, 地上部分生长显著受到抑制; 地上部Na+离子含量显著升高, 丙二醛(MDA)含量显著升高; 蒸腾速率、气孔导度及胞间CO2浓度显著升高, 净光合速率显著下降。为揭示其盐胁迫下表型差异的分子基础, 对LY8405和caspl2b2突变体材料在正常生长和盐胁迫条件下叶片组织进行转录组分析。结果表明,差异表达基因主要富集到谷胱甘肽转移酶活性、谷胱甘肽代谢过程、氧化还原酶活性和细胞稳态等相关途径, 其中谷胱甘肽代谢过程最为显著。本研究不仅为作物耐盐遗传基础解析提供了重要的种质资源, 也为耐盐基因的挖掘及其遗传调控网络分析奠定了基础。

关键词: 玉米, 盐胁迫, 突变体, 转录组分析, 差异表达基因

Abstract:

Salt stress-sensitive mutants are crucial genetic materials for studying the genetic basis and molecular mechanisms of salt tolerance in crops. In this study, the maize inbred line LY8405 and the mutant caspl2b2 were used to investigate phenotype, physiological, and biochemical indices at the seedling stage under normal growth and salt stress conditions. The results showed that, compared to LY8405, the survival rate of caspl2b2 significantly decreased under salt stress, and the growth of aboveground parts was notably inhibited. The content of Na+ ions and malondialdehyde (MDA) in aboveground parts significantly increased, while transpiration rate, stomatal conductance, and intercellular CO2 concentration also increased significantly. Conversely, the net photosynthetic rate significantly decreased. To uncover the molecular basis of the phenotypic differences under salt stress, transcriptome analysis was performed on leaf tissues of LY8405 and caspl2b2 under normal growth and salt stress conditions. The results revealed that differentially expressed genes (DEGs) were mainly concentrated in glutathione transferase activity, glutathione metabolism, REDOX enzyme activity, and cell homeostasis, with glutathione metabolism being the most significant. This study not only provides important germplasm resources for the genetic basis analysis of crop salt tolerance, but also lays a foundation for the identification of salt tolerance genes and the analysis of genetic regulatory networks.

Key words: Zea mays L., salt stress, mutant, transcriptome analysis, differentially expressed genes

图1

caspl2b2突变体盐处理浓度筛选 A: 盐处理前WT和突变体caspl2b2的表型; B~D: 100 mmol L-1、150 mmol L-1和200 mmolL-1 NaCl处理7 d后WT和caspl2b2突变体的表型; E: 不同盐浓度处理下caspl2b2突变体的存活率。"

图2

盐处理后WT和caspl2b2突变体的存活率 A: 处理前WT和突变体caspl2b2的表型; B, D: 200 mmol L-1 NaCl处理3 d、7 d和14 d后的WT和caspl2b2突变体的表型; E: 盐处理不同天数后WT和caspl2b2突变体的存活率。"

图3

盐胁迫后 WT 和 caspl2b2 突变体的表型性状 A~D: 200 mmol L-1 NaCl处理后WT和caspl2b2突变体的苗高、初生根长、地上鲜重和地下鲜重的表型性状。E~G: 200 mmol L-1 NaCl处理3 d后WT和caspl2b2突变体的植株总体表型、叶片表型和根部表型。以上数据为平均值±标准差。Student’s t测验用于显著性分析。NS代表差异不显著。*代表P < 0.05, **代表P < 0.01。"

图4

盐胁迫后WT和caspl2b2突变体的Na+、K+含量 A: WT和caspl2b2突变体地上部Na+含量; B: K+含量; C: Na+ /K+; D: WT和caspl2b2突变体的MDA含量。以上数据为平均值±标准差。Student’s t测验用于显著性分析。NS代表差异不显著。*代表P < 0.05, **代表P < 0.01。"

图5

盐胁迫后WT和caspl2b2突变体的光合指标 A~D: 200 mmol L-1 NaCl处理3 d后WT和caspl2b2突变体的光合指标; A: 蒸腾速率; B: 气孔导度; C: 胞间CO2浓度; D: 净光合速率。以上数据为平均值±标准差。Student’s t测验用于显著性分析。NS代表差异不显著。*代表 P < 0.05, **代表 P < 0.01。"

表1

转录组测序相关数据"

样本
Sample
测序总读数
Total reads number
质控后读数
Clean reads number
错误率
Error rate
(%)
总比对率
Mapped ratio (%)
Q20 碱基百分比
Q20 base percentage (%)
Q30 碱基百分比
Q30 base percentage (%)
WT-1 21,635,978 20,957,262 0.02 96.86 98.22 94.71
WT-2 24,644,756 23,996,460 0.02 97.37 98.21 94.81
WT-3 22,386,955 21,537,487 0.02 96.21 98.12 94.55
Caspl2b2-1 25,381,514 24,489,459 0.02 96.49 98.20 94.72
Caspl2b2-2 23,662,504 22,826,123 0.02 96.47 98.14 94.68
Caspl2b2-3 23,551,867 22,839,156 0.02 96.97 97.94 94.32

图6

样本基因表达分布及相关性分析 A: 各样本基因表达分布; B: 样本间相关性。"

图7

差异基因火山图 Up: 上调基因; Down: 下调基因; Not significant: 无显著差异基因。"

图8

差异显著基因富集分析 A: 差异显著基因GO富集; B: 差异显著基因KEGG富集。"

表2

离子运输相关差异表达基因"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d003861 ZmHAK1 Potassium high-affinity transporter -0.15 0.44
Zm00001d042244 ZmHAK5 Potasium ion uptake permease 1 -0.61 0.55
Zm00001d049987 ZmHAK4 Probable potassium transporter 4 -0.31 0.71
Zm00001d040627 ZmHKT1 Sodium transporter HKT1 0.92 0.01
Zm00001d030955 ZmSOS3 CBL11; calcineurin B-like11: cbl11 -0.07 0.77
Zm00001d031232 ZmSOS1 Sodium/hydrogen exchanger 0.14 0.49
Zm00001d002428 ZmNSA1 EF hand family protein 0.46 3.00E-03
Zm00001d024587 ZmNPF6.4 Protein NRT1/PTR FAMILY 6.3 0.38 0.03

图9

qRT-PCR检测离子运输相关基因的表达 A: ZmHKT1基因的表达量; B: ZmHKT2基因的表达量; C: ZmHAK1基因的表达量; D: ZmHAK5基因的表达量。"

表3

凯氏带形成相关差异表达基因"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d038762 ZmRBOHF RBOH3; respiratory burst oxidase3 -0.32 0.11
Zm00001d027636 ZmESB1 Dirigent protein 16 0.42 0.87
Zm00001d040807 ZmCASPL1B2 CASPL4; CASP-like protein 4 0.10 0.60
Zm00001d005158 ZmCASPL1D1 CASPL3; CASP-like protein 3 -0.27 0.52
Zm00001d019457 ZmCASPL1D2 CASPL1D2; CASP-like protein 1D2 -0.44 0.05

表4

谷胱甘肽相关差异表达基因"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d049657 ZmGSTU1 GST26; glutathione transferase 26 -0.31 0.34
Zm00001d038192 ZmGSTU2 GST41; glutathione transferase 41 1.08 0.37
Zm00001d016860 ZmGSTU4 GST17; glutathione transferase 17 0.31 0.07
Zm00001d036951 ZmGSTU5 GST19; glutathione transferase 19 1.28 3.28E-09
Zm00001d043787 ZmGSTU6 GSTU6; glutathione S-transferase 6 0.85 0.003
Zm00001d043795 ZmGSTU10 GSTU10; glutathione S-transferase 10 0.98 8.47E-05
Zm00001d043789 ZmGSTU11 GSTU11; glutathione S-transferase 11 2.40 0.01
Zm00001d029706 ZmGSTU12 GST39; glutathione transferase 39 1.10 3.50E-07
Zm00001d043344 ZmGSTF3 GST8; glutathione transferase 8 0.80 0.20
[1] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J M, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D, Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010, 327: 833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[2] 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述. 陕西农业科学, 2015, 61: 67-71.
Hu Y, Han J C, Zhang Y. Research overview of saline-alkali soil improvement techniques. Shaanxi J Agric Sci, 2015, 61: 67-71 (in Chinese).
[3] 姜佩弦, 张凯, 王艺桥, 张鸣, 曹一博, 蒋才富. 玉米耐盐分子机制研究进展. 植物遗传资源学报, 2022, 23: 49-60.
doi: 10.13430/j.cnki.jpgr.20210812004
Jiang P X, Zhang K, Wang Y Q, Zhang M, Cao Y B, Jiang C F. Recent advance of molecular understanding of salt tolerance in maize. J Plant Genet Resour, 2022, 23: 49-60 (in Chinese with English abstract).
[4] Zhang F, Zhu G Z, Du L, Shang X G, Cheng C Z, Yang B, Hu Y, Cai C P, Guo W Z. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep, 2016, 6: 20582.
doi: 10.1038/srep20582 pmid: 26838812
[5] Kim C K, Lim H M, Na J K, Choi J W, Sohn S H, Park S C, Kim Y H, Kim Y K, Kim D Y. A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform Online, 2014, 10: 69-78.
[6] Xu T T, Meng S, Zhu X P, Di J C, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na+/K+ balance in barley (Hordeum vulgare L.). Front Plant Sci, 2023, 13: 1004477.
[7] Qin Y J, Wu W H, Wang Y. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+conditions. J Integr Plant Biol, 2019, 61: 691-705.
[8] Zhang M, Liang X Y, Wang L M, Cao Y B, Song W B, Shi J P, Lai J S, Jiang C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5: 1297-1308.
doi: 10.1038/s41477-019-0565-y pmid: 31819228
[9] Zhang M, Li Y D, Liang X Y, Lu M H, Lai J S, Song W B, Jiang C F. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnol J, 2023, 21: 97-108.
[10] Luo M J, Zhao Y X, Zhang R Y, Xing J F, Duan M X, Li J N, Wang N S, Wang W G, Zhang S S, Chen Z H, Zhang H S, Shi Z, Song W, Zhao J R. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol, 2017, 17: 140.
doi: 10.1186/s12870-017-1090-7 pmid: 28806927
[11] Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186.
[12] Wen Z Y, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K S, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581-2596.
[13] Wang Z G, Yamaji N, Huang S, Zhang X, Shi M X, Fu S, Yang G Z, Ma J F, Xia J X. OsCASP1 is required for casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell, 2019, 31: 2636-2648.
[14] Yang J H, Ding C Q, Xu B C, Chen C T, Narsai R, Whelan J, Hu Z Y, Zhang M F. A Casparian strip domain-like gene, CASPL negatively alters growth and cold tolerance. Sci Rep, 2015, 5: 14299.
[15] Wang Y Y, Cao Y B, Liang X Y, Zhuang J H, Wang X F, Qin F, Jiang C F. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.
doi: 10.1038/s41467-022-29809-0 pmid: 35468878
[16] Landi S, Hausman J F, Guerriero G, Esposito S. Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci, 2017, 8: 1214.
[17] Cui P, Liu H B, Islam F, Li L, Farooq M A, Ruan S L, Zhou W J. OsPEX11, a peroxisomal biogenesis factor 11, contributes to salt stress tolerance in Oryza sativa. Front Plant Sci, 2016, 7: 1357.
[18] Bo C, Chen H W, Luo G W, Li W, Zhang X G, Ma Q, Cheng B J, Cai R H. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429
[19] Ming Q, Wang K, Wang J J, Liu J X, Li X H, Wei P P, Guo H L, Chen J B, Zong J Q. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. Front Plant Sci, 2022, 13: 970651.
[20] 邓肖, 徐学欣, 孙芹, 张玉璐, 朱紫鑫, 郝天佳, 高国龙, 贺小彦, 王秀琳, 赵长星. 不同盐浓度胁迫下冬小麦幼苗光合特性及转录组分析. 植物生理学报, 2023, 59: 1819-1829.
Deng X, Xu X X, Sun Q, Zhang Y L, Zhu Z X, Hao T J, Gao G L, He X Y, Wang X L, Zhao C X. Photosynthetic characteristics and transcriptome analysis of winter wheat seedlings under different salt concentration stress. Plant Physiol J, 2023, 59: 1819-1829 (in Chinese with English abstract).
[21] Wei X C, Liu L L, Lu C X, Yuan F, Han G L, Wang B S. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Planta, 2021, 254: 81.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[4] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[5] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[6] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[7] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[8] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[9] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[10] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[11] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[12] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[13] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[14] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[15] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!