作物学报 ›› 2024, Vol. 50 ›› Issue (4): 871-886.doi: 10.3724/SP.J.1006.2024.34124
ZHANG Li-Lan1,2(), YANG Jun1,2, WANG Rang-Jian1,2,*()
摘要:
橙花叔醇与芳樟醇是广泛分布于植物中的挥发性萜烯醇类化合物, 在茶树新梢中主要以樱草糖苷形式存在, 提高其含量对茶叶香气品质改良具有重要意义。为揭示茶树橙花叔醇和芳樟醇樱草糖苷的遗传机制, 本研究以169个茶树自然杂交后代单株为关联群体, 利用均匀分布在茶树染色体上的675,245个SNP标记, 对3个年份下茶树新梢中橙花叔醇与芳樟醇樱草糖苷含量进行全基因组关联分析(genome-wide association study, GWAS)。结果表明, 橙花叔醇与芳樟醇樱草糖苷含量的表型变异系数为60.83%~80.08%, 广义遗传力分别为51.29%与61.87%, 基本符合正态分布, 具有典型的数量性状遗传特征。全基因组关联分析共检测到50个显著关联位点, 各位点分别对橙花叔醇和芳樟醇樱草糖苷含量变化的贡献率均超过20%, 其中橙花叔醇樱草糖苷含量(nerolidol primeveroside content, NPC)变化位点最大贡献率为38.73%, 芳樟醇樱草糖苷含量(linalool primeveroside content, LPC)变化位点最大贡献率为39.07%。通过等位变异效应分析, 鉴定出4个主效SNP位点及其优异等位变异, 并发现1个可同时调控NPC和LPC的一因多效位点。结合已有的文献报道和基因的功能注释, 筛选出每个显著位点置信区间内最有可能的候选基因共59个, 主要涉及茶树的糖类代谢、转录调控、萜烯类生物合成等多个生物学过程, 其中26个基因在适制绿茶品种和适制乌龙茶品种单芽中的表达水平存在显著差异。本研究为深入解析茶树橙花叔醇和芳樟醇樱草糖苷含量的遗传机制提供了新的信息, 为加速培育高香型优异茶树新品种提供了重要的基因资源。
[1] |
Wang D, Yoshimura T, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: I. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J Agric Food Chem, 2000, 48: 5411-5418.
doi: 10.1021/jf000443m |
[2] |
Liu G F, Liu J J, He Z R, Wang F M, Yang H, Yan Y F, Gao M J, Gruber M, Wan X C, Wei S. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ, 2018, 41: 176-186.
doi: 10.1111/pce.v41.1 |
[3] |
Wei K, Wang X, Hao X, Qian Y, Li X, Xu L, Ruan L, Wang Y, Zhang Y, Bai P, Li Q, Aktar S, Hu X, Zheng G, Wang L, Liu B, He W, Cheng H, Wang L. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol J, 2022, 20: 414-416.
doi: 10.1111/pbi.v20.3 |
[4] |
Cao K, Yang X, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Wang L. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits. Plant J, 2021, 108: 281-295.
doi: 10.1111/tpj.v108.1 |
[5] |
Gong C, He N, Zhu H, Anees M, Lu X, Liu W. Multi-omics integration to explore the molecular insight into the volatile organic compounds in watermelon. Food Res Int, 2023, 166: 112603.
doi: 10.1016/j.foodres.2023.112603 |
[6] |
Ferrão L F V, Johnson T S, Benevenuto J, Edger P P, Colquhoun T A, Munoz P R. Genome-wide association of volatiles reveals candidate loci for blueberry flavor. New Phytol, 2020, 226: 1725-1737.
doi: 10.1111/nph.16459 pmid: 31999829 |
[7] |
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105 |
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11105 |
|
[8] |
Xia E H, Li F D, Tong W, Li P H, Wu Q, Zhao H J, Ge R H, Li R P, Li Y Y, Zhang Z Z, Wei C L, Wan X C. Tea Plant Information Archive (TPIA): a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J, 2019, 17: 1938-1953.
doi: 10.1111/pbi.v17.10 |
[9] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析. 作物学报, 2023, 49: 1843-1859. |
Wang R J, Yang J, Zhang L L, Gao X F. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots. Acta Agron Sin, 2023, 49: 1843-1859. (in Chinese with English abstract) | |
[10] | Chen J D, He W Z, Chen S, Chen Q Y, Ma J Q, Jin J Q, Ma C L, Moon D G, Ercisli S, Yao M Z, Chen L. TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Front Plant Sci, 2022, 13: 1056891. |
[11] |
Liu C, Qiao X, Li Q, Zeng W, Wei S, Wang X, Chen Y, Wu X, Wu J, Yin H, Zhang S. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biol, 2020, 20: 14.
doi: 10.1186/s12870-019-2230-z |
[12] |
Fang K, Xia Z, Li H, Jiang X, Qin D, Wang Q, Wang Q, Pan C, Li B, Wu H. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic Res, 2021, 8: 42.
doi: 10.1038/s41438-021-00477-3 |
[13] |
Hazra A, Kumar R, Sengupta C, Das S. Genome-wide SNP discovery from Darjeeling tea cultivars: their functional impacts and application toward population structure and trait associations. Genomics, 2021, 113: 66-78.
doi: 10.1016/j.ygeno.2020.11.028 |
[14] |
Huang R, Wang J Y, Yao M Z, Ma C L, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Hortic Res, 2022, 9: uhab029.
doi: 10.1093/hr/uhab029 |
[15] |
Yamashita H, Uchida T, Tanaka Y, Katai H, Nagano A J, Morita A, Ikka T. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Sci Rep, 2020, 10: 17480.
doi: 10.1038/s41598-020-74623-7 pmid: 33060786 |
[16] |
Heng Z, Xu X, Xu X, Wang H, Liu L, Li Z, Li Z, You Q, Sun B, Gong C, Yin Y, Li Y, Li T. Characterization of odor-contributing volatile in Capsicum chinense ‘JT-1’ fruits during development and transcriptome analysis of key fruit-aroma formation periods. Sci Hortic, 2023, 309: 111691.
doi: 10.1016/j.scienta.2022.111691 |
[17] |
马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023 |
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wan X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661. (in Chinese with English abstract) | |
[18] |
董一帆, 任毅, 程宇坤, 王睿, 张志辉, 时晓磊, 耿洪伟. 冬小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2023, 56: 2047-2063.
doi: 10.3864/j.issn.0578-1752.2023.11.002 |
Dong Y F, Ren Y, Cheng Y K, Wang R, Zhang Z H, Shi X L, Geng H W. Genome-wide association study of grain main quality related traits in winter wheat. Sci Agric Sin, 2023, 56: 2047-2063. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.11.002 |
|
[19] |
Fan Z, Tieman D M, Knapp S J, Zerbe P, Famula R, Barbey C R, Folta K M, Amadeu R R, Lee M, Oh Y, Lee S, Whitaker V M. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytol, 2022, 236: 1089-1107.
doi: 10.1111/nph.18416 pmid: 35916073 |
[20] |
Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, Huang S, Fei Z, Wang H, Li H, Yu Q. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat Genet, 2023, 55: 852-860.
doi: 10.1038/s41588-023-01340-y pmid: 37024581 |
[21] |
Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, Chen X, Sun Y, Guo Y, Yang J, Zhang X, Ye N. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res, 2021, 8: 107.
doi: 10.1038/s41438-021-00542-x |
[22] |
Bönisch F, Frotscher J, Stanitzek S, Ruehl E, Wüst M, Bitz O, Schwab W. A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol, 2014, 165: 561-581.
doi: 10.1104/pp.113.232470 |
[23] |
Li X Y, Wen Y Q, Meng N, Qian X, Pan Q H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Front Plant Sci, 2017, 8: 1226.
doi: 10.3389/fpls.2017.01226 |
[24] |
Rodriguez-Bencomo J J, Muñoz-González C, Andujar-Ortiz I, Martín-Álvarez P J, Moreno-Arribas M V, Pozo-Bayón M Á. Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis. J Sci Food Agric, 2011, 91: 2484-2494.
doi: 10.1002/jsfa.4494 |
[25] |
Xia E H, Tong W, Hou Y, An Y, Chen L, Wu Q, Liu Y L, Yu J, Li F, Li R, Li P, Zhao H, Ge R, Huang J, Mallano H I, Zhang Y, Liu S, Deng W, Song C, Zhang Z, Zhao J, Wei S, Zhang Z, Xia T, Wei C, Wan X. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants. Mol Plant, 2020, 13: 1013-1026.
doi: 10.1016/j.molp.2020.04.010 |
[26] |
Martin D, Aubourg S, Schouwey M, Daviet L, Schalk M, Toub O, Lund S, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol, 2010, 10: 226.
doi: 10.1186/1471-2229-10-226 pmid: 20964856 |
[27] |
Boachon B, Burdloff Y, Ruan J X, Rojo R, Junker R R, Vincent B, Nicolè F, Bringel F, Lesot A, Henry L, Bassard J E, Mathieu S, Allouche L, Kaplan I, Dudareva N, Vuilleumier S, Miesch L, André F, Navrot N, Chen X Y, Werck-Reichhart D. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome. Plant Cell, 2019, 31: 2947-2972.
doi: 10.1105/tpc.19.00320 |
[28] |
Dhandapani S, Jin J, Sridhar V, Chua N H, Jang I C. CYP79D73 participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiol, 2019, 180: 171-184.
doi: 10.1104/pp.19.00098 pmid: 30804010 |
[29] |
Yuan Y, Ren S, Liu X, Su L, Wu Y, Zhang W, Li Y, Jiang Y, Wang H, Fu R, Bouzayen M, Liu M, Zhang Y. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytol, 2022, 234: 164-178.
doi: 10.1111/nph.17977 pmid: 35048386 |
[30] |
Cao X, Wei C, Duan W, Gao Y, Kuang J, Liu M, Chen K, Klee H, Zhang B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. Plant J, 2021, 106: 785-800.
doi: 10.1111/tpj.v106.3 |
[31] |
Gao Y, Lin Y, Xu M, Bian H, Zhang C, Wang J, Wang H, Xu Y, Niu Q, Zuo J, Fu D Q, Pan Y, Chen K, Klee H, Lang Z, Zhang B. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. New Phytol, 2022, 235: 1913-1926.
doi: 10.1111/nph.v235.5 |
[32] |
Wang R, Shu P, Zhang C, Zhang J, Chen Y, Zhang Y, Du K, Xie Y, Li M, Ma T, Zhang Y, Li Z, Grierson D, Pirrello J, Chen K, Bouzayen M, Zhang B, Liu M. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol, 2022, 233: 373-389.
doi: 10.1111/nph.v233.1 |
[33] |
Hsiao Y Y, Tsai W C, Kuoh C S, Huang T H, Wang H C, Wu T S, Leu Y L, Chen W H, Chen H H. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol, 2006, 6: 14.
doi: 10.1186/1471-2229-6-14 |
[34] |
Xu Y, Zhou J, Lu S, Wang S, Zhou Y. Cloning and molecular characterization of CfMYBs associated with the regulation of methyl jasmonate biosynthesis in Cymbidium faberi. Hortic J, 2020, 89: 593-601.
doi: 10.2503/hortj.UTD-176 |
[35] |
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiol, 2022, 188: 2146-2165.
doi: 10.1093/plphys/kiac014 pmid: 35043961 |
[36] |
Srivastava S, Sangwan R S. Analysis of Artemisia annua transcriptome for BAHD alcohol acyltransferase genes: identification and diversity of expression in leaf, stem and root. J Plant Biochem Biotechnol, 2012, 21: 108-118.
doi: 10.1007/s13562-012-0141-2 |
[37] |
Wang M, Liu X, Wang R, Li W, Rodermel S, Yu F. Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid. J Exp Bot, 2012, 63: 5787-5801.
doi: 10.1093/jxb/ers227 |
[38] |
Bueren E T, Østergård H, Vriend H, Backes G. The role of molecular markers and marker assisted selection in breeding for organic and low-input agriculture. Euphytica, 2010, 175: 51-64.
doi: 10.1007/s10681-010-0169-0 |
[39] |
Eggink P M, Tikunov Y, Maliepaard C, Haanstra J P, de Rooij H, Vogelaar A, Gutteling E W, Freymark G, Bovy A G, Visser R G. Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theor Appl Genet, 2014, 127: 373-390.
doi: 10.1007/s00122-013-2225-3 pmid: 24185820 |
[40] |
王慧玲, 闫爱玲, 王晓玥, 刘振华, 任建成, 徐海英, 孙磊. 葡萄果粒质量相关性状全基因组关联分析. 中国农业科学, 2023, 56: 1561-1573.
doi: 10.3864/j.issn.0578-1752.2023.08.011 |
Wang H L, Yan A L, Wang X Y, Liu Z H, Ren J C, Xu H Y, Sun L. Genome-wide association studies for grape berry weight related traits. Sci Agric Sin, 2023, 56: 1561-1573. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.08.011 |
[1] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[2] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
[3] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[4] | 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1和CsMCC2基因的克隆及表达特征性分析[J]. 作物学报, 2024, 50(3): 656-668. |
[5] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[6] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[7] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[8] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[9] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[10] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[11] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[12] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[13] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[14] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[15] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
|