欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1818-1828.doi: 10.3724/SP.J.1006.2024.34117

• 耕作栽培·生理生化 • 上一篇    下一篇

油菜籽粒叶绿素降解速率对菜籽油关键品质的影响

闫子恒(), 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生*()   

  1. 华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2023-07-10 接受日期:2024-01-12 出版日期:2024-07-12 网络出版日期:2024-02-19
  • 通讯作者: *周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 作者简介:E-mail: yanziheng@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1901205)

Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil

YAN Zi-Heng(), WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-07-10 Accepted:2024-01-12 Published:2024-07-12 Published online:2024-02-19
  • Contact: *E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1901205)

摘要:

油菜籽粒中的叶绿素是阻碍高品质菜籽油生产的关键因素。压榨制油时叶绿素进入菜籽油, 菜籽油叶绿素含量高不仅外观品质差, 且易引发光氧化反应。因此, 提高籽粒成熟过程中叶绿素降解速率, 对改善菜籽油外观及营养品质具有重要意义。试验利用281份来自国内外的栽培品种、品系组成的自然群体, 在武汉试验点连续进行2年田间小区试验, 考察油菜籽粒叶绿素降解速率、油脂外观及营养品质等指标, 分析籽粒叶绿素降解与千粒重、含油量、油脂色泽、抗氧化能力等指标的内在联系, 以期为优质菜籽油原料的生产提供理论与技术支撑。结果表明, 不同品系籽粒叶绿素降解速率存在差异, 供试群体品系间存在广泛变异; 相关性分析显示, 籽粒叶绿素降解速率与种子千粒重、含油量无显著相关性, 与菜籽油叶绿素含量显著负相关; 菜籽油叶绿素含量与菜籽油红值、黄值及过氧化值显著正相关, 与菜籽油抗氧化能力显著负相关, 籽粒叶绿素降解速率快的类别, 菜籽油色泽更浅, 菜籽油过氧化值较低且具有较高的总酚含量与抗氧化能力; 花后40 d, 叶绿素降解快的品系籽粒POR酶的活性低于叶绿素降解慢的品系, 但花后53 d PAO酶的活性高于叶绿素降解慢的品系, 因此籽粒成熟后期叶绿素降解速率快, 种子叶绿素含量低。

关键词: 油菜, 籽粒叶绿素, 降解速率, 菜籽油, 品质

Abstract:

The chlorophyll in rapeseed seed is one of the key factors hindering the production of high-quality rapeseed oil. The higher chlorophyll content in rapeseed oil is not only make it poor in appearance, but also cause rapid photooxidation reaction. Therefore, it is of great significance to improve the appearance and nutritional quality of rapeseed oil by increasing the degradation rate of chlorophyll at seed ripening stage. In order to provide the theoretical and technical support for the production of high-quality rapeseed oil raw materials, a natural population consisting of 281 cultivars and breeding lines from different regions was used in a two-year field experiment in Wuhan, to investigate the chlorophyll degradation rate of rapeseed seeds, and the appearance and nutritional quality of oil, besides analysing the internal relationship between chlorophyll degradation and 1000-seed weight, oil content, oil colour, and its antioxidant capacity. The results showed that there were significant differences in chlorophyll degradation rate among different strains, and there was wide variation among the tested population materials. Correlation analysis showed that there was no significant correlation between chlorophyll degradation rate and 1000-seed weight and oil content of seed, but significantly negative correlation with the chlorophyll content of rapeseed oil. The chlorophyll content of rapeseed oil was positively correlated with the red value, yellow value, and peroxide value, while negatively correlated with antioxidant capacity of rapeseed oil. For the category with fast chlorophyll degradation rate, rapeseed oil had lighter colour, lower peroxide value, higher total phenol content, and antioxidant capacity. Compared to slow chlorophyll degrading strains, the activity of protochlorophyllide oxidoreductases (POR) enzyme was lower at 40 days after anthesis, whereas pheophorbide an oxygenase (PAO) enzyme activity was higher at 53 days after anthesis in the seeds of fast chlorophyll degrading strains, indicating that seed chlorophyll content was lower and its degradation rate was faster in seeds at the late stage of seed maturation.

Key words: rapeseed, seed chlorophyll, degradation rate, rapeseed oil, quality

图1

不同年度主要气象因子"

图2

油菜籽粒叶绿素含量动态变化、POR与PAO相关基因表达模式"

图3

油菜自然群体籽粒叶绿素含量的分布"

表1

自然群体籽粒叶绿素含量、千粒重及含油量的表型分析"

性状
Trait
2020-2021 2021-2022
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after
anthesis (mg g-1)
0.39 0.07 0.21 0.58 0.40 0.07 0.19 0.59
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after
anthesis ( mg g-1)
0.35 0.12 0.01 0.60 0.10 0.10 0.01 0.45
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.08 0.14 -0.28 0.52 0.30 0.10 0.00 0.55
千粒重
1000-seed weight (g)
4.11 0.69 2.36 6.85 4.01 0.69 2.35 5.83
含油量
Oil content (%)
45.62 3.48 37.18 61.65 44.69 3.48 37.02 52.85

图4

不同年度籽粒叶绿素降解量与含油量和千粒重的相关性分析"

图5

105份油菜品系中籽粒叶绿素含量下降幅度的分布"

表2

105份株系种子叶绿素含量及菜籽油性状的变异分析"

性状
Trait
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
种子叶绿素含量Seed chlorophyll content (mg kg-1) 7.18 3.28 1.28 18.11
油脂叶绿素含量Oil chlorophyll content (mg kg-1) 0.69 0.35 0.13 1.94
油脂红值 Oil red value 2.2 0.4 1.1 3.2
油脂黄值 Oil yellow value 25.6 5.0 18.0 42.0
油脂总酚含量Oil total-phenols content (mg 100 g-1) 16.55 4.08 9.88 24.98
油脂过氧化值Oil peroxide value (g 100 g-1) 0.046 0.017 0.015 0.095
油脂活性氧清除能力 Oil DPPH (μmol 100 g-1) 21.58 2.83 14.40 28.30
油脂铁离子还原能力 Oil FRAP (μmol 100 g-1) 42.47 6.23 28.40 56.24

图6

籽粒叶绿素降解速率与籽粒叶绿素含量(A)及籽粒叶绿素含量与菜籽油叶绿素含量的相关性分析(B) ** 表示在P < 0.01水平相关性显著。"

图7

105份品系籽粒叶绿降解速率的系统聚类 图中字母C与数字的组合分别表示105份品系对应的编号。"

表3

系统聚类中不同类别籽粒叶绿素含量的表型分析"

类别
Type
性状
Trait
平均值Mean 标准差
SD
最小值
Min.
最大值
Max.
类别I
Category I
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.51 0.05 0.45 0.59
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.04 0.03 0.01 0.09
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.47 0.04 0.43 0.55
类别II
Category II
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.39 0.07 0.26 0.57
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.07 0.06 0.01 0.34
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.32 0.06 0.21 0.42
类别III
Category III
花后40 d籽粒叶绿素含量
Seed chlorophyll content at 40 days after flowering (mg g-1)
0.39 0.07 0.25 0.50
花后53 d籽粒叶绿素含量
Seed chlorophyll content at 53 days after flowering (mg g-1)
0.26 0.07 0.08 0.35
籽粒叶绿素含量降解量
Seed chlorophyll content degradation (mg g-1)
0.13 0.05 0.01 0.19

图8

籽粒叶绿素降解速率对菜籽油外观及品质指标的影响 不同类别间不同字母表示在P < 0.05水平差异显著。"

图9

籽粒叶绿素降解速率与菜籽油外观及品质指标的相关性分析 ** 表示在P < 0.01水平差异显著。"

表4

6份特殊品系叶绿素含量及菜籽油关键指标的方差分析"

品系
Line
籽粒叶绿素Seed chlorophyll content 菜籽油 Rapeseed oil
花后40 d
40 days after flowering (mg g-1)
花后53 d
53 days after flowering
(mg g-1)
降解量Degra-
dation
(mg g-1)
叶绿素
含量
Chlorophyll content
(mg g-1)
叶绿素
含量
Chlorophyll content
(mg g-1)
红值
Red value
黄值
Yellow value
过氧化值
Peroxide value
(g 100 g-1)
总酚含量
Total-
phenols content
(g 100 g-1)
活性氧
清除能力
DPPH
(μmol 100 g-1)
铁离子
还原能力
FRAP
(μmol 100 g-1)
SWU46 0.4623 ab 0.3877 a 0.0746 8.5748 b 0.824 c 2.3 c 27 b 0.052 c 19.39 a 21.71 b 48.68 a
CY20-66 0.4832 a 0.3633 a 0.1199 13.2383 a 1.057 a 2.4 a 29 a 0.058 b 14.78 c 19.71 bc 37.72 d
Huashuang 128 0.4956 a 0.3045 b 0.1911 8.4177 b 0.894 b 2.4 b 26 c 0.068 a 12.60 d 20.20 bc 41.69 c
A82 0.4201 c 0.0187 e 0.4014 2.8724 d 0.349 e 2.0 e 21 f 0.026 f 17.63 b 28.30 a 45.61 b
Ningyou 18 0.4391 bc 0.1223 c 0.3168 4.8432 c 0.559 d 2.2 d 24 d 0.049 d 12.82 b 19.71 bc 43.11 b
CY16-35 0.4376 bc 0.0491 d 0.3885 4.7428 c 0.488 d 2.2 d 23 e 0.035 e 12.63 d 19.30 c 40.78 c

图10

籽粒中原叶绿素酸酯氧化还原酶POR与脱镁叶绿酸a单加氧酶PAO的活性分析 SWU46、CY20-66和Huashuang 128为叶绿素降解较慢的品系, A82、Ningyou 18和CY16-35为叶绿素降解较快品系; 字母表示达到显著性差异(P < 0.05)。"

[1] Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. The physiological and proteomic characteristics of oilseed rape stem affect seed yield and lodging resistance under different planting densities and row spacing. J Agron Crop Sci, 2021, 5: 840-856.
[2] Yang R, Zhang L, Li P, Yu L, Mao J, Wang X, Zhang Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol, 2018, 74: 26-32.
[3] Choe E, Min D B. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf, 2006, 5: 169-186
[4] Wan C Y. Effects of enzymatic treatment on rapeseed oil degumming and quality. J Food Sci, 2007, 28: 194-198.
[5] Mikołajczak N, Tańska M, Konopka I. Impact of the addition of 4-vinyl-derivatives of ferulic and sinapic acids on retention of fatty acids and terpenoids in cold-pressed rapeseed and flaxseed oils during the induction period of oxidation. Food Chem, 2018, 278: 119-126.
[6] Li X, Yang R, Lyu C, Chen L, Zhang L, Ding X, Zhang W, Zhang Q, Hu C, Li P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
[7] Ghnaya A B, Charles G, Hourmant A, Hamida J B, Branchard M. Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol, 2009, 332: 363-370.
[8] Ayu D F, Andarwulan N, Hariyadi P, Purnomo E H. Effect of tocopherols tocotrienols beta-carotene and chlorophyll on the photo-oxidative stability of red palm oil. Food Sci Biotechnol, 2016, 25: 401-407.
[9] Szydłowska C A, Bartkowiak I, Karlović I, Karlovits G, Szłyk E. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem, 2011, 127: 556-563.
doi: 10.1016/j.foodchem.2011.01.040 pmid: 23140700
[10] Lee J, Choe E. Effects of phospholipids on the antioxidant activity of α-tocopherol in the singlet oxygen oxidation of canola oil. New Biotechnol, 2011, 28: 691-697.
doi: 10.1016/j.nbt.2011.04.013 pmid: 21621019
[11] Tautorus C L, Low N H. Chemical aspects of chlorophyll breakdown products and their relevance to canola oil stability. J Am Oil Chem Soc, 1993, 70: 843-847.
[12] Smolikova A. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. J Turbul, 2017, 18: 21-33.
[13] Paddock T N, Mason M E, Lima D F, Armstron G A. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol, 2010, 72: 445-457.
doi: 10.1007/s11103-009-9582-y pmid: 20012672
[14] Hörtensteiner S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol, 2013, 82: 505-517.
doi: 10.1007/s11103-012-9940-z pmid: 22790503
[15] Christ B, Süssenbacher I, Moser S, Bichsel N, Egert A, Müller T, Kräutler B, Hörtensteiner S. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell, 2013, 25: 1868-1880.
[16] 白晨阳, 何菡子, 贾才华, 李晓华, 任奕林, 叶俊, 汪波, 蒯婕, 周广生. 机械收获方式对油菜籽粒关键性状的影响. 中国农业科学, 2021, 54: 2991-3003.
doi: 10.3864/j.issn.0578-1752.2021.14.006
Bai C Y, He H Z, Jia C H, Li X H, Ren Y L, Ye J, Wang B, Kuai J, Zhou G S. Effect of the mechanical harvesting methods on the key traits of rapeseed. Sci Agric Sin, 2021, 54: 2991-3003 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.14.006
[17] Ning N, Hu B, Bai C Y, Li X H, Kuai J, He H Z, Ren Y L, Wang B, Jia C H, Zhou G S. Influence of two-stage harvesting on the properties of cold-pressed rapeseed (Brassica napus L.) oils. J Integr Agric, 2023, 22: 265-278.
[18] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究, 推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638 (in Chinese with English abstract).
[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003. pp 134-138.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2003. pp 134-138 (in Chinese).
[20] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 油菜籽叶绿素含量测定分光光度计法. GB/T 22182-2008, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Rapeseed-determination of chlorophyll content-spectrometric method. GB/T 22182-2008, 2008 (in Chinese).
[21] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 动植物油脂罗维朋色泽的测定. GB/T 22460-2008, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Animal and vegetable fats and oils-determination of locibond colour. GB/T 22460-2008, 2008 (in Chinese).
[22] Pokorny J L, Kalinova, Dysseler P. Determination of chlorophyll pigments in crude vegetable oils: results of a collaborative study and the standardized method (Technical Report). Pure Appl Chem, 1995, 10: 1781-1787.
[23] Kaur C, Kapoor H C. Anti-oxidant activity and total phenolic content of some asian vegetables. Int J Food Sci Technol, 2002, 37: 153-161.
[24] Shantha N C, Decker E A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J Aoac Int, 1994, 2: 421-424.
[25] Szydłowska C A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferricion spectrophotometric methods. Talanta, 2008, 76: 899-905.
doi: 10.1016/j.talanta.2008.04.055 pmid: 18656676
[26] Baud S, Lepiniec L C. Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010, 49: 235-249.
doi: 10.1016/j.plipres.2010.01.001 pmid: 20102727
[27] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582-593.
[28] Asokanthan P S, Johnson R W, Griffith M, Krol M. The photosynthetic potential of canola embryos. Physiol Plant, 2010, 101: 353-360.
[29] Fait A, Angelovici R, Less H, Ohad I, Urbanczyk W E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839-854.
[30] Díez B A, Bustamante J, Romero A, Ninot A, Tres A, Vichi S, Guardiola F. Effect of the storage conditions and freezing speed on the color and chlorophyll profile of premium extra virgin olive oils. Foods, 2023, 12: 222-234.
[31] Liang Y D, Zhang Y J, Jin W, Cao P R, Liu Y F. Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a sprague-dawley rat model. Food Funct, 2019, 10: 6503-6516.
doi: 10.1039/c9fo01592b pmid: 31536073
[32] Gotoh N, Wada S. The importance of peroxide value in assessing food quality and food safety. J Am Oil Chem Soc, 2006, 83: 473-474.
[33] Zheng C, Yang M, Zhou Q, Liu C S, Huang F H. Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Eur J Lipid Sci Technol, 2014, 116: 1675-1684.
[34] Kaleem A, Aziz S, Iqtedar M. Investigating changes and effect of peroxide values in cooking oils subject to light and heat. Fuuast J Biol, 2015, 5: 191-196.
[35] Terpinc P, Čeh B, Ulrih N P, Abramovič H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod, 2012, 39: 210-217.
[36] Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H. An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep, 2013, 3: 1217.
doi: 10.1038/srep01217 pmid: 23386973
[1] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[2] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[3] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[4] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[5] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[6] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[7] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[8] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[9] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[10] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[11] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[12] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[13] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[14] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[15] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[7] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[8] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[9] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[10] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .