欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2652-2662.doi: 10.3724/SP.J.1006.2025.51024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦骨干亲本鲁麦14系谱分析

史晓磊1(), 孙旭生2(), 潘国庆1, 邱丽华1, 戎鑫愉1, 赵春华1, 吴永振1, 孙晗1, 秦冉1,*(), 崔法1,*()   

  1. 1鲁东大学园艺学院 / 烟台市作物高产抗逆分子育种及高效栽培重点实验室, 山东烟台 264025
    2烟台市农业技术推广中心, 山东烟台 264000
  • 收稿日期:2025-03-01 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-15
  • 通讯作者: *崔法, E-mail: sdaucf@126.com;秦冉, E-mail: ranqin89@163.com
  • 作者简介:史晓磊, E-mail: 1092340738@qq.com;
    孙旭生, E-mail: sunxusheng@yt.shandong.cn
    **同等贡献
  • 基金资助:
    泰山学者项目(20230119);烟台市科技计划项目(2023ZDCX023);山东省重点研发计划项目(2024LZGCQY012);山东省重点研发计划项目(2022LZG002-2);山东省自然科学基金项目(ZR2022MC119)

Pedigree analysis of the wheat backbone parent Lumai 14

SHI Xiao-Lei1(), SUN Xu-Sheng2(), PAN Guo-Qing1, QIU Li-Hua1, RONG Xin-Yu1, ZHAO Chun-Hua1, WU Yong-Zhen1, SUN Han1, QIN Ran1,*(), CUI Fa1,*()   

  1. 1School of Horticulture, Ludong University / Yantai Key Laboratory of Molecular Breeding and Efficient Cultivation for High Yield and Stress Resistance of Crops, Yantai 264025, Shandong, China
    2Yantai Agricultural Technology Extension Center, Yantai 264000, Shandong, China
  • Received:2025-03-01 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-15
  • Contact: *E-mail: sdaucf@126.com;E-mail: ranqin89@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Taishan Scholars Program(20230119);Yantai Science and Technology Plan Project(2023ZDCX023);Key R&D Program of Shandong Province(2024LZGCQY012);Key R&D Program of Shandong Province(2022LZG002-2);Shandong Provincial Natural Science Foundation(ZR2022MC119)

摘要: 小麦作为我国主要粮食作物, 其良种选育对保障粮食安全至关重要。鲁麦14作为黄淮麦区代表性品种, 兼具高产、稳产及多抗性等优良特性, 不仅在生产中发挥了重要作用, 更成为关键的骨干亲本。本研究系统梳理了鲁麦14及其438个衍生品种的系谱信息, 通过构建系谱网络, 揭示了从早期骨干亲本蚰子麦到鲁麦14的遗传传递路径, 分析了不同年代及地域的衍生品种分布特征。结果表明, 自1991年以来, 鲁麦14衍生品种数量达到438个, 其中子三代品种数量达285个; 特别是近5年, 其衍生品种的数量达264个, 其中济麦22育成品种数量达到半数以上, 贡献突出, 说明鲁麦14和济麦22与其早期亲代蚰子麦、蚰包麦一样发挥着骨干亲本的作用, 是我国重要的种质资源; 鲁麦14衍生品种主要集中在黄淮麦区北部的山东省、河北省等地区。对近5年的衍生情况进一步分析, 发现骨干亲本重复集中利用问题更加突出。利用小麦55K SNP芯片对20份鲁麦14衍生品种及9份鲁麦13衍生品种进行遗传多样性分析发现, 29份品种之间的遗传相似系数在0.87~0.99之间, 品种间同质化程度较高, 今后应高度重视我国小麦遗传多样性变窄的问题, 加强种质资源创新相关研究。

关键词: 小麦, 品种, 鲁麦14, 骨干亲本, 系谱分析

Abstract:

As a staple food crop in China, wheat plays a vital role in national food security, and the development of elite cultivars is of paramount importance. Lumai 14, a representative variety in the Huang-Huai wheat region, exhibits superior traits such as high yield, stability, and resistance to multiple diseases. These attributes have made it not only a key cultivar in production but also an important backbone parent in breeding programs. In this study, we systematically analyzed the pedigree of Lumai 14 and its 438 derived varieties, constructing a pedigree network to trace the genetic lineage from the early foundational parent Youzimai to Lumai 14. We also examined the spatiotemporal distribution patterns of its derived varieties. The results showed that since 1991, Lumai 14 has contributed to the development of 438 derived lines, including 285 third-generation varieties. Notably, in the past five years alone, 264 new varieties have been developed, with over half derived from Jimai 22, highlighting its substantial breeding influence. These findings indicate that both Lumai 14 and Jimai 22, like their ancestral parents Youzimai and Youbaomai, continue to serve as critical backbone parents and valuable germplasm resources in China. The majority of Lumai 14-derived varieties are concentrated in Shandong and Hebei provinces, located in the northern Huang-Huai wheat region. Further analysis of breeding trends over the past five years revealed an increasing issue of repetitive and concentrated use of backbone parents. Genetic diversity analysis of 20 Lumai 14-derived and 9 Lumai 13-derived varieties using the wheat 55K SNP chip showed that the genetic similarity coefficients among these 29 varieties ranged from 0.87 to 0.99, indicating a high level of genetic homogenization. Moving forward, greater attention should be given to the narrowing genetic base of wheat in China, and efforts to innovate and expand germplasm resources should be strengthened.

Key words: wheat, variety, Lumai 14, backbone parents, pedigree analysis

图1

鲁麦14系谱图 紫色节点代表鲁麦14重要亲本来源; 蓝色节点代表鲁麦14子一代品种; 橙色节点代表鲁麦14子二代品种; 绿色节点代表鲁麦14子三代品种; 黑色节点代表鲁麦14子四代品种; 白色节点代表鲁麦14子五代品种。"

图2

各时期鲁麦14衍生小麦品种数目"

图3

鲁麦14衍生品种地域分布"

图4

近5年鲁麦14衍生品种不同世代数量"

图5

近5年鲁麦14衍生品种系谱网络关系图 绿色节点代表近5年鲁麦14衍生的品种。"

图6

近5年鲁麦14衍生品种地域分布"

表1

各时期和省份济麦22衍生品种数目"

区域 Region 2011-2020 2021-2024 总计Total
安徽 Anhui 5 16 21
北京 Beijing 1 1 2
甘肃 Gansu 2 0 2
河北 Hebei 19 38 57
河南 Henan 6 7 13
江苏 Jiangsu 2 0 2
山东 Shandong 25 52 77
山西 Shanxi 5 5 10
天津 Tianjin 1 1 2
全国 Nationwide 66 120 186

图7

济麦22系谱图 绿色节点代表济麦22子一代品种; 蓝色节点代表济麦22子二代品种; 紫色节点代表济麦22子三代品种。"

表2

20份鲁麦14衍生品种系谱信息"

序号
No.
品种
Variety
系谱
Pedigree
审/认定年份
Approved/identified year
1 良星99 Liangxing 99 济91102/鲁麦14//PH85-16 Ji 91102/Lumai 14//PH85-16 2004
2 济麦22 Jimai 22 935024/935106 2006
3 淄麦29 Zimai 29 泰农18/烟5072 Tainong 18/Yan 5072 2018
4 泰科麦31 Taikemai 31 泰山26/淮麦20 Taishan 26/Huaimai 20 2018
5 登海206 Denghai 206 济麦22/周麦20 Jimai 22/Zhoumai 20 2019
6 石麦25 Shimai 25 济麦22/金禾9123 Jimai 22/Jinhe 9123 2016
7 烟1212 Yan 1212 烟5072/石94-5300 Yan 5072/Shi 94-5300 2018
8 鑫麦289 Xinmai 289 935031/鲁麦14 935031/Lumai 14 2009
9 烟农173 Yannong 173 济麦22/烟2415 Jimai 22/Yan 2415 2016
10 青农6号 Qingnong 6 济麦20/烟农19 Jimai 20/Yannong 19 2019
11 济麦23 Jimai 23 豫麦34/济麦22 Yumai 34/Jimai 22 2016
12 泰山22 Taishan 22 鲁麦18/鲁麦14 Lumai 18/Lumai 14 2004
13 烟农22 Yannong 22 鲁麦14//尉132/87初20 Lumai 14//Wei 132/87 Chu 20 2002
14 烟农999 Yannong 999 烟航选2号/临9511//烟BLU14-15 Yanhangxuan 2/Lin 9511//Yan BLU14-15 2016
15 山农17 Shannong 17 L156 /莱州137 L156/Laizhou 137 2009
16 泰农19 Tainong 19 莱州137/济南17 Laizhou 137/Jinan 17 2011
18 济麦37 Jimai 37 济麦22/泰农18 Jimai 22/Tainong 18 2024
19 中麦23 Zhongmai 23 济麦22/淮9701 Jimai 22/Huai 9701 2019
20 淮麦22 Huaimai 22 淮麦18/扬麦158 Huaimai 18/Yangmai 158 2007

表3

9份鲁麦13衍生品种系谱信息"

序号
No.
品种
Variety
系谱
Pedigree
审/认定年份
Approved/identified year
1 鑫麦296 Xinmai 296 935031/鲁麦23 935031/Lumai 23 2013
2 良星66 Liangxing 66 济91102/935031 Ji 91102/935031 2008
3 山农15 Shannong 15 济南17号/济核916 Jinan 17/Jihe 916 2006
4 鲁原502 Luyuan 502 9940168/济麦19 9940168/Jimai 19 2016
5 鲁原202 Luyuan 202 济麦19/鲁原130 Jimai 19/Luyuan 130 2006
6 济南17 Jinan 17 临汾5064/鲁麦13 Linfen 5064/Lumai 13 1999
7 汶农5号 Wennong 5 鲁麦21/泰山5号 Lumai 21/Taishan 5 2003
8 新麦26 Xinmai 26 新麦9408/济南17 Xinmai 9408/Jinan 17 2010
9 菏麦17 Hemai 17 95-12/烟886059 95-12/Yan 886059 2011

图8

骨干亲本衍生品种的UPGMA聚类图"

[1] 李永祥, 王天宇, 黎裕. 主要农作物骨干亲本形成与研究利用. 植物遗传资源学报, 2019, 20: 1093-1102.
doi: 10.13430/j.cnki.jpgr.20190505003
Li Y X, Wang T Y, Li Y. Formation and research utilization of backbone parents in major crops. J Plant Genet Resour, 2019, 20: 1093-1102 (in Chinese with English abstract).
[2] 李振声. 我国小麦育种的回顾与展望. 中国农业科技导报, 2010, 12(2): 1-4.
Li Z S. Review and prospect of wheat breeding in China. J Agric Sci Technol, 2010, 12(2): 1-4 (in Chinese with English abstract).
[3] Li G W, Ren Y, Yang Y X, Chen S L, Zheng J Z, Zhang X Q, Li J L, Chen M G, Sun X N, Lyu C L, et al. Genomic analysis of Zhou 8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. Plant Commun, 2025, 6: 101222.
[4] Zhao C H, Zhang N, Fan X L, Ji J, Shi X L, Cui F, Ling H Q, Li J M.Dissecting the key genomic regions underlying high yield potential in common wheat variety Kenong 9204. J Integr Agric, 2023, 22: 2603-2616.
[5] 刘泽厚, 万洪深, 杨凡, 王琴, 唐豪, 杨宁, 杨武云, 李俊. 西南麦区骨干亲本川麦42重要基因组区段的确定及其对衍生品种的遗传贡献. 西南农业学报, 2024, 37: 897-912.
Liu Z H, Wan H S, Yang F, Wang Q, Tang H, Yang N, Yang W Y, Li J. Identification of key genomic regions in backbone parent Chuanmai 42 and their genetic contributions to derived cultivars in southwestern China wheat region. Southwest China J Agric Sci, 2024, 37: 897-912 (in Chinese with English abstract).
[6] 唐建卫, 殷贵鸿, 高艳, 王丽娜, 韩玉林, 黄峰, 于海飞, 杨光宇, 李新平, 肖永贵, 等. 小麦骨干亲本周8425B及其衍生品种(系)的农艺性状和加工品质综合分析. 麦类作物学报, 2015, 35: 777-784.
Tang J W, Yin G H, Gao Y, Wang L N, Han Y L, Huang F, Yu H F, Yang G Y, Li X P, Xiao Y G, et al. Comprehensive analysis of agronomic traits and processing quality in wheat backbone parent Zhou 8425B and its derived cultivars (lines). J Triticeae Crops, 2015, 35: 777-784 (in Chinese with English abstract).
[7] 刘兆晔, 于经川, 孙妮娜, 李林志. 骨干亲本鲁麦13、鲁麦14在山东小麦育种中的应用. 农业科技通讯, 2015, (1): 87-90.
Liu Z Y, Yu J C, Sun N N, Li L Z. Application of backbone parents Lumai 13 and Lumai 14 in wheat breeding in Shandong province. Agric Sci Technol Newsl, 2015, (1): 87-90 (in Chinese).
[8] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954-961.
doi: 10.3724/SP.J.1006.2012.00954
Gai H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to newly bred wheat cultivars in Shandong province. Acta Agron Sin, 2012, 38: 954-961 (in Chinese with English abstract).
[9] 孙妮娜, 赵明, 王冬梅, 孙亮, 严美玲, 赵倩, 姜鸿明, 于经川, 李林志. 小麦骨干亲本‘鲁麦14'的育种价值分析. 中国农学通报, 2020, 36(10): 13-17.
doi: 10.11924/j.issn.1000-6850.casb18120068
Sun N N, Zhao M, Wang D M, Sun L, Yan M L, Zhao Q, Jiang H M, Yu J C, Li L Z. Analysis of breeding value of wheat backbone parent ‘Lumai 14'. Chin Agric Sci Bull, 2020, 36(10): 13-17 (in Chinese with English abstract).
[10] 卢良恕. 反映我国小麦育种科学发展的新成就: 评《中国小麦品种及其系谱》. 中国农业科学, 1985, 18(3): 96.
Lu L S. Reflecting new achievements in China's wheat breeding science: a review of Chinese wheat varieties and their pedigrees. Sci Agric Sin, 1985, 18(3): 96 (in Chinese with English abstract).
[11] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 10-13.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 10-13 (in Chinese).
[12] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 杨恩年, 蒋云, 刘于斌, 王相权, 等. 四川省小麦育成品种系谱分析及发展进程. 遗传, 2019, 47: 599-610.
Zheng J M, Luo J T, Wan H S, Li S Z, Yang M Y, Li J, Yang E N, Jiang Y, Liu Y B, Wang X Q, et al. Pedigree analysis and development process of wheat cultivars in Sichuan province. Hereditas (Beijing), 2019, 47: 599-610 (in Chinese with English abstract).
[13] 农业部粮食生产总局种子处. 蚰子麦. 农业科学通讯, 1956, (1): 43-44.
Seed Division of the Grain Production Bureau, Ministry of Agriculture. Youzimai wheat. Agric Sci Technol Newsl, 1956, (1): 43-44 (in Chinese).
[14] 于经川, 刘兆晔, 姜鸿明, 严美玲, 孙晓辉. 蚰包麦的选育及其在育种上的应用. 中国农学通报, 2007, 23(2): 189-192.
Yu J C, Liu Z Y, Jiang H M, Yan M L, Sun X H. Breeding and application of Youbaomai in wheat breeding programs. Chin Agric Sci Bull, 2007, 23(2): 189-192 (in Chinese with English abstract).
[15] 段友臣, 程敦公, 李豪圣, 宋健民, 赵振东, 刘建军. “十五”以来山东省小麦育种现状及发展趋势. 山东农业科学, 2011, 43(6): 30-34.
Duan Y C, Cheng D G, Li H S, Song J M, Zhao Z D, Liu J J. Current status and development trends of wheat breeding in Shandong province since the 10th five-year plan period. Shandong Agric Sci, 2011, 43(6): 30-34 (in Chinese with English abstract).
[16] 李亚军, 王江浩, 赵爱菊, 刘玉平, 陈希勇, 李尔民, 柳英东. “十一五”河北省小麦育种进展及发展策略. 河北农业科学, 2009, 13(4): 53-55.
Li Y J, Wang J H, Zhao A J, Liu Y P, Chen X Y, Li E M, Liu Y D. Progress and development strategies of wheat breeding in Hebei province during the 11th five-year plan period. J Hebei Agric Sci, 2009, 13(4): 53-55 (in Chinese with English abstract).
[17] 李爱国, 宋晓霞, 吴春西, 赵月强, 张文斐, 王改革. 黄淮南片小麦新品种表型特点及育种现状浅析. 作物研究, 2020, 34: 368-373.
Li A G, Song X X, Wu C X, Zhao Y Q, Zhang W F, Wang G G. Phenotypic characteristics and current breeding status of new wheat varieties in southern Huang-Huai region. Crop Res, 2020, 34: 368-373 (in Chinese with English abstract).
[18] 易腾飞, 李珊珊, 李嘉豪, 白云飞, 赵勇, 张树华, 杨学举. 261份小麦品种基于农艺性状的遗传多样性分析. 河北农业大学学报, 2018, 41(2): 7-13.
Yi T F, Li S S, Li J H, Bai Y F, Zhao Y, Zhang S H, Yang X J. Genetic diversity analysis of 261 wheat varieties based on agronomic traits. J Hebei Agric Univ, 2018, 41(2): 7-13 (in Chinese with English abstract).
[19] 张志鹏.20世纪中国小麦育种事业发展史研究. 北农林科技大学硕士学位论文, 陕西杨凌, 2022.
Zhang Z P. Research on the Development History of Wheat Breeding in 20th Century China. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[20] 李旭华, 牟丽明, 令鹏. 149份春小麦种质资源遗传多样性分析. 寒旱农业科学, 2024, 3: 531-537.
Li X H, Mu L M, Ling P. Genetic diversity analysis of 149 spring wheat germplasm resources. J Cold Arid Agric Sci, 2024, 3: 531-537 (in Chinese with English abstract).
[21] 程斌, 丁延庆, 曹宁, 高旭, 徐建霞, 罗永露, 张立异, 王伟. 基于120K液相芯片对310份小麦种质的遗传多样性分析. 麦类作物学报, 2024, 44: 1104-1114.
Cheng B, Ding Y Q, Cao N, Gao X, Xu J X, Luo Y L, Zhang L Y, Wang W. Genetic diversity analysis of 310 wheat germplasms using 120K liquid-chip technology. J Triticeae Crops, 2024, 44: 1104-1114 (in Chinese with English abstract).
[22] 汪强, 沈会权, 徐肖, 张英虎, 杨红燕, 程怡璠, 梁志浩, 薛松, 郭爱奎, 于文青, 等. 小麦种质资源性状分析及遗传多样性评价. 大麦与谷类科学, 2024, 41(3): 8-13.
Wang Q, Shen H Q, Xu X, Zhang Y H, Yang H Y, Cheng Y F, Liang Z H, Xue S, Guo A K, Yu W Q, et al. Trait analysis and genetic diversity evaluation of wheat germplasm resources. Barley Cereal Sci, 2024, 41(3): 8-13 (in Chinese with English abstract).
[23] 岳福菊, 信军. 农业国家技术发明奖一等奖概况及案例分析. 农业科研经济管理, 2019, (2): 26-29.
Yue F J, Xin J. Overview and case analysis of first prize winners of national technology invention award in agriculture. Manag Econ Agric Sci Res, 2019, (2): 26-29 (in Chinese with English abstract).
[24] 王龙啟.小麦远缘杂交育成新品系遗传组成鉴定及性状评价. 山东农业大学硕士学位论文, 山东泰安, 2022.
Wang L Q. Genetic Composition Identification and Trait Evaluation of New Wheat Lines Developed Through Distant Hybridization. MS Thesis of Shandong Agricultural University, Tai'an, Shandong, China, 2022 (in Chinese with English abstract).
[25] Ji Y Z, Yang G T, Li X F, Wang H G, Bao Y G. Development and characterization of two wheat-rye introgression lines with resistance to stripe rust and powdery mildew. Int J Mol Sci, 2024, 25: 11677.
[26] Zeng J, Zhou C L, He Z M, Wang Y, Xu L L, Chen G D, Zhu W, Zhou Y H, Kang H Y. Disomic substitution of 3d chromosome with its homoeologue 3e in tetraploid Thinopyrum elongatum enhances wheat seedlings tolerance to salt stress. Int J Mol Sci, 2023, 24: 1609.
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[4] 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411.
[5] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[6] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[7] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[8] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[9] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[10] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[11] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[12] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[13] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[14] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[15] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!