作物学报 ›› 2025, Vol. 51 ›› Issue (2): 347-357.doi: 10.3724/SP.J.1006.2025.42030
李春梅,陈洁,郎兴宣,庄海民,朱靖,杜梓君,冯浩天,金涵,朱国林,刘凯*
LI Chun-Mei,CHEN Jie,LANG Xing-Xuan,ZHUANG Hai-Min,ZHU Jing,DU Zi-Jun,FENG Hao-Tian,JIN Han,ZHU Guo-Lin,LIU Kai*
摘要:
分蘖是影响水稻株型和产量的重要性状。本研究获得一个稳定遗传的矮化多分蘖自然突变体dt1 (dwarf and tillering 1)。此外,dt1突变体穗长、结实率、粒长、粒宽、千粒重、维管束鞘细胞数量及大小较野生型均显著降低。图位克隆证实dt1突变体是由编码独脚金内酯生物合成途径关键酶类胡萝卜素裂解双加氧酶(Carotenoid Cleavage Dioxygenase 7,CCD7)的D17/HTD1 (LOC_Os04g46470)第2个外显子上8 bp的插入导致的,是一个D17/HTD1的新等位突变。此外,dt1突变体萌发率、根长、根直径均显著降低,外施独脚金内酯类似物GR24能恢复dt1突变体的这些表型。转录组测序结果显示,dt1突变体有579个基因上调,506个基因下调。GO分析显示上调基因显著富集在生长素响应、内源刺激响应和激素响应等通路,下调基因显著富集在胞内碳水化合物代谢和组蛋白甲基化等通路。KEGG分析显示上调基因在植物激素信号转导等通路显著富集,下调基因在氨基糖和核苷酸糖代谢及二萜生物合成等通路上显著富集。研究结果丰富和拓展了CCD7和独脚金内酯在水稻中的调控作用,对水稻育种具有重要理论意义。
[1] Wang Y H, Li J Y. Branching in rice. Curr Opin Plant Biol, 2011, 14: 94–99. [2] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437–468. [3] Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618–621. [4] Lin Q B, Wang D, Dong H, Gu S H, Cheng Z J, Gong J, Qin R Z, Jiang L, Li G, Wang J L, Wu F Q, Guo X P, Zhang X, Lei C L, Wang H Y, Wan J M. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun, 2012, 3: 752. [5] Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun, 2012, 3: 750. [6] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090–1102. [7] Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513–520. [8] Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51: 1127–1135. [9] Lu Z F, Yu H, Xiong G S, Wang J, Jiao Y Q, Liu G F, Jing Y H, Meng X B, Hu X M, Qian Q, Fu X D, Wang Y H, Li J Y. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell, 2013, 25: 3743–3759. [10] Song X G, Lu Z F, Yu H, Shao G N, Xiong J S, Meng X B, Jing Y H, Liu G F, Xiong G S, Duan J B, Yao X F, Liu C M, Li H Q, Wang Y H, Li J Y. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res, 2017, 27: 1128–1141. [11] Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Mol Plant, 2020, 13: 586–597. [12] Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Wan J M. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell, 2019, 31: 1026–1042. [13] Janssen B J, Drummond R S M, Snowden K C. Regulation of axillary shoot development. Curr Opin Plant Biol, 2014, 17: 28–35. [14] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell, 2020, 32: 3124–3138. [15] Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, Jiang X Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19: 167–176. [16] Barbier F F, Dun E A, Kerr S C, Chabikwa T G, Beveridge C A. An update on the signals controlling shoot branching. Trends Plant Sci, 2019, 24: 220–236. [17] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401–405. [18] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410. [19] Yao R F, Ming Z H, Yan L M, Li S H, Wang F, Ma S, Yu C T, Yang M, Chen L, Chen L H, Li Y W, Yan C, Miao D, Sun Z Y, Yan J B, Sun Y N, Wang L, Chu J F, Fan S L, He W, Deng H T, Nan F J, Li J Y, Rao Z H, Lou Z Y, Xie D X. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536: 469–473. [20] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029. [21] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525. [22] Liu L H, Xie T T, Peng P, Qiu H Y, Zhao J F, Fang J J, Patil S B, Wang Y Q, Fang S, Chu J F, Yuan S J, Zhang W H, Li X Y. Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Plant Sci, 2018, 267: 1–10. [23] Liu X, Hu Q L, Yan J J, Sun K, Liang Y, Jia M R, Meng X B, Fang S, Wang Y Q, Jing Y H, Liu G F, Wu D X, Chu C C, Smith S M, Chu J F, Wang Y H, Li J Y, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784–1801. [24] Liu L H, Ren M M, Peng P, Chun Y, Li L, Zhao J F, Fang J J, Peng L X, Yan J J, Chu J F, Wang Y Q, Yuan S J, Li X Y. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. J Genet Genomics, 2021, 48: 88–91. [25] Zhou H, Yang M, Zhao L, Zhu Z F, Liu F X, Sun H Y, Sun C Q, Tan L B. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. J Exp Bot, 2021, 72: 1212–1224. [26] Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738. [27] Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, Zhu S S, Wang J, Zhao Z C, Guo X P, Wang H Y, Wan J M. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973–1987. [28] Wu K, Wang S S, Song W Z, Zhang J Q, Wang Y, Liu Q, Yu J P, Ye Y F, Li S, Chen J F, Zhao Y, Wang J, Wu X K, Wang M Y, Zhang Y J, Liu B M, Wu Y J, Harberd N P, Fu X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367: eaaz2046. [29] McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res, 2002, 9: 257–279. [30] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. [31] Conesa A, Götz S, García-Gómez J M, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674–3676. [32] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30. [33] Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci, 2019, 28: 1947–1951. [34] Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res, 2023, 51: D587–D592. [35] Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta, 2005, 222: 604–612. [36] Sun F L, Zhang W P, Xiong G S, Yan M X, Qian Q, Li J Y, Wang Y H. Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics, 2010, 37: 69–77. [37] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195–200. [38] Zou J H, Zhang S Y, Zhang WP, Li G, Chen Z X, Zhai W X, Zhao X F, Pan X B, Xie Q, Zhu L H. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698. [39] Zhang Y X, van Dijk A D J, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol, 2014, 10: 1028–1033.
[40] 张丹, 潘银林, 毛毕刚, 陈东, 吴天昊, 孙远涛, 胡远艺, 韶也, 彭彦, 刘春林, 赵炳然. 水稻矮秆多分蘖突变体htd(t)的遗传分析与基因定位. 杂交水稻, 2018, 33(4): 71–75. [41] 王晓雯, 王媛媛, 冯蓓祺, 雷松翰, 范骏扬, 杨晶晶, 仝瑞建, 田维江, 桑贤春. 水稻矮化多蘖突变体mtd2/htd1-1的鉴定与图位克隆. 西南大学学报(自然科学版), 2024, 46(2): 2–12. Wang X W, Wang Y Y, Feng B Q, Lei S H, Fan J Y, Yang J J, Tong R J, Tian W J, Sang X C. Identification and map-based cloning of multi-tillering dwarf mutant mtd2/htd1-1 in rice (Oryza sativa L.). J Southwest Univ (Nat Sci Edn), 2024, 46(2): 2–12 (in Chinese with English abstract). [42] Kulkarni K P, Vishwakarma C, Sahoo S P, Lima J M, Nath M, Dokku P, Gacche R N, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh A K, Singh K, Singh N K, Sharma R P. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J Genet, 2014, 93: 389–401. [43] Wang Y X, Shang L G, Yu H, Zeng L J, Hu J, Ni S, Rao Y C, Li S F, Chu J F, Meng X B, Wang L, Hu P, Yan J J, Kang S J, Qu M H, Lin H, Wang T, Wang Q, Hu X M, Chen H Q, Wang B, Gao Z Y, Guo L B, Zeng D L, Zhu X D, Xiong G S, Li J Y, Qian Q. A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant, 2020, 13: 923–932. [44] Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol, 2010, 6: 741–749.
[45] 祝四, 邓凤玲, 赵光, 朝洪波, 李春生, 顾建伟. 独脚金内酯对甘蓝型油菜种子的引发作用及其机制研究. 湖北农业科学, 2023, 62(9): 6–13. [46] Hu Z Y, Yan H F, Yang J H, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol, 2010, 51: 1136–1142. [47] Hu Z Y, Yamauchi T, Yang J H, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol, 2014, 55: 30–41. [48] Sun H W, Tao J Y, Hou M M, Huang S J, Chen S, Liang Z H, Xie T N, Wei Y Q, Xie X N, Yoneyama K, Xu G H, Zhang Y L. A strigolactone signal is required for adventitious root formation in rice. Ann Bot, 2015, 115: 1155–1162. [49] Ruyter-Spira C, Kohlen W, Charnikhova T, Zeijl A V, Bezouwen L V, Ruijter N D, Cardoso C, Lopez-Raez J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in arabidopsis: another belowground role for strigolactones? Plant Physiol, 2011, 155: 721–734. |
[1] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[2] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[3] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[4] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[5] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[6] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[7] | 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038. |
[8] | 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919. |
[9] | 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947. |
[10] | 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804. |
[11] | 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698. |
[12] | 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. |
[13] | 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634. |
[14] | 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360. |
[15] | 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252. |
|