欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 548-556.doi: 10.3724/SP.J.1006.2025.44090

• 研究简报 • 上一篇    

花生主茎节间和侧枝节间长度的关联作图及候选基因分析

赵斐斐1,2(), 李少雄2, 刘浩2, 李海芬2, 王润风2, 黄璐2, 余倩霞2, 洪彦彬2, 陈小平2, 鲁清2,*(), 曹玉曼1,*()   

  1. 1西北农林科技大学草业与草原学院, 陕西杨陵 712100
    2广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室 / 国家油料作物改良中心南方花生分中心, 广东广州 510640
  • 收稿日期:2024-06-03 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-11
  • 通讯作者: : 曹玉曼, E-mail: yumancao@nwafu.edu.cn; 鲁清, E-mail: luqing2016@126.com
  • 作者简介:E-mail: 3212704698@qq.com
  • 基金资助:
    国家重点研发计划项目(2023YFD1202800);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);“十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2022SDZG05);广东省重点领域研发计划项目-现代种业(2022B0202060004);广东特支计划项目(2021TX06N789)

Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes

ZHAO Fei-Fei1,2(), LI Shao-Xiong2, LIU Hao2, LI Hai-Fen2, WANG Run-Feng2, HUANG Lu2, YU Qian-Xia2, HONG Yan-Bin2, CHEN Xiao-Ping2, LU Qing2,*(), CAO Yu-Man1,*()   

  1. 1College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2024-06-03 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-11
  • Contact: E-mail: yumancao@nwafu.edu.cn; E-mail: luqing2016@126.com
  • Supported by:
    National Key Research and Development Program of China(2023YFD1202800);China Agriculture Research System of MOF and MARA(CARS-13);Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan in Guangdong Province(2022SDZG05);Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2022B0202060004);Special Support Program of Guangdong Province(2021TX06N789)

摘要: 花生主茎节间和侧枝节间长度是影响单株产量的重要农艺性状。本研究以390份花生自然群体为研究材料, 在花生成熟期分别测量主茎与侧枝的第一、第二、第三节间长度。选用GAPIT3.0软件中的混合线性模型(PCA+K模型)进行全基因组关联分析。结果显示, 主茎、侧枝节间长度基本符合正态分布, 主茎节间与侧枝节间存在显著正相关。检测到63个主茎节间、侧枝节间长度相关位点。根据关联情况, 找到3个显著性关联位点和位点簇。在A04_57397319挖掘到1个与前人共定位的显著性关联位点, 并在该处预测到5个候选基因。本研究结果有助于解析花生主茎节间和侧枝节间的遗传基础和调控机制, 为指导花生株型改良奠定基础。

关键词: 花生, 主茎节间长度, 侧枝节间长度, 全基因组关联分析

Abstract:

The internode length of the main stem and lateral branches is a key agronomic trait influencing the yield per plant in peanuts. In this study, 390 natural peanut populations were used to measure the length of the first, second, and third internodes of both the main stem and lateral branches at maturity. A genome-wide association analysis was conducted using the mixed linear model (PCA+K model) in GAPIT3.0 software. The results showed that the internode lengths of the main stem and lateral branches followed a normal distribution and were significantly positively correlated. A total of 63 loci associated with the internode length of the main stem and lateral branches were identified. Three significant association sites and site clusters were discovered, including a notable association at A04_57397319 that co-located with findings from previous research. Five candidate genes were predicted within this region. These findings provide valuable insights into the genetic basis and regulatory mechanisms of internode length in both the main stem and lateral branches of peanuts, laying a foundation for plant architecture improvement.

Key words: peanut, main stem internode length, lateral branch internode length, GWAS

表1

2017年花生群体节间长度相关性状的统计分析"

性状
Trait
最大值
Max.
最小值
Min.
平均值±标准数
Mean ± SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
主茎第一节间长度Main stem first internode length 6.00 1.00 2.09±0.61 0.29 1.953 8.880
主茎第二节间长度Main stem second internode length 3.50 0.50 1.55±0.56 0.36 0.560 0.149
主茎第三节间长度Main stem third internode length 4.25 0.26 1.64±0.63 0.38 0.818 1.175
侧枝第一节间长度Lateral branch first internode length 8.00 0.65 2.25±0.92 0.40 1.734 6.093
侧枝第二节间长度Lateral branch second internode length 7.00 1.00 2.40±0.85 0.35 1.526 4.486
侧枝第三节间长度Lateral branch third internode length 7.50 0.20 2.81±0.97 0.35 1.215 3.067

图1

花生关联群体节间长度相关性状的分布 MSF: 主茎第一节间长度; MSS: 主茎第二节间长度; MST: 主茎第三节间长度; LBF: 侧枝第一节间长度: LBS: 侧枝第二节间长; LBT: 侧枝第三节间长度。"

图2

花生主茎和侧枝节间性状间的相关系数 缩写同图1。**表示在0.01概率水平显著相关。"

表2

主茎和侧枝茎节长度性状显著性关联位点"

性状
Trait
关联位点
Associated sites
染色体
Chromosome
位置
Position
P
P-value
MSF A01_106043972 A01 106,043,972 1.51E-07
A03_96536142 A03 96,536,142 1.08E-08
A04_57397319 A04 57,397,319 2.29E-07
A05_51337016 A05 51,337,016 1.08E-08
A05_74958968 A05 74,958,968 1.08E-08
A06_30420867 A06 30,420,867 1.08E-08
A07_34955668 A07 34,955,668 1.08E-08
A07_48095361 A07 48,095,361 3.72E-07
A07_49223806 A07 49,223,806 1.32E-07
A07_52783226 A07 52,783,226 1.61E-07
A07_58125963 A07 58,125,963 2.84E-07
A07_66360549 A07 66,360,549 3.09E-07
A07_71636384 A07 71,636,384 1.84E-07
A07_73981302 A07 73,981,302 1.62E-08
A07_75712072 A07 75,712,072 1.61E-07
A07_81744376 A07 81,744,376 6.20E-08
A07_83570736 A07 83,570,736 7.46E-08
A07_87296838 A07 87,296,838 1.08E-08
A07_93491105 A07 93,491,105 4.48E-08
A07_109121009 A07 109,121,009 1.61E-07
A07_111031457 A07 111,031,457 2.14E-07
A08_24070999 A08 24,070,999 1.08E-08
A09_62081202 A09 62,081,202 1.92E-07
A09_67453035 A09 67,453,035 2.71E-07
A10_37985014 A10 37,985,014 3.00E-07
B01_137273357 B01 137,273,357 1.08E-08
B02_49773743 B02 49,773,743 1.08E-08
B02_52441346 B02 52,441,346 1.45E-07
B04_14356520 B04 14,356,520 1.08E-08
B05_37369887 B05 37,369,887 1.08E-08
B05_153066632 B05 153,066,632 1.08E-08
B07_4160712 B07 4,160,712 1.21E-07
B08_21939742 B08 21,939,742 1.08E-08
B10_9639595 B10 9,639,595 1.08E-08
B10_13221609 B10 13,221,609 1.08E-08
B10_45639904 B10 45,639,904 3.66E-08
B10_119864830 B10 119,864,830 1.08E-08
B10_132271423 B10 132,271,423 1.08E-08
MST A01_73271598 A01 73,271,598 2.14E-07
LBF A01_23488952 A01 23,488,952 2.29E-07
A01_55372401 A01 55,372,401 2.14E-07
A01_68297303 A01 68,297,303 2.49E-07
A02_8875457 A02 8,875,457 2.61E-07
A03_2953786 A03 2,953,786 2.33E-07
A06_4380158 A06 4,380,158 2.68E-07
A06_86359952 A06 86,359,952 2.52E-07
A06_103855231 A06 103,855,231 2.60E-07
A07_129887507 A07 129,887,507 2.98E-07
A09_62083927 A09 62,083,927 2.05E-07
A09_114516939 A09 114,516,939 2.69E-07
A10_79235001 A10 79,235,001 2.37E-07
A10_104046269 A10 104,046,269 2.15E-07
B01_104941977 B01 104,941,977 2.96E-07
B01_150609234 B01 150,609,234 2.26E-07
B03_52115966 B03 52,115,966 2.80E-07
B03_143095996 B03 143,095,996 2.12E-07
B05_18845147 B05 18,845,147 2.10E-07
B05_95256042 B05 95,256,042 1.18E-07
B06_16502781 B06 16,502,781 3.12E-07
B06_42455491 B06 42,455,491 2.01E-07
B07_61224 B07 61,224 3.12E-07
B07_47200539 B07 47,200,539 2.01E-07

图3

花生主茎节间和侧枝节间长度全基因组关联分析曼哈顿图"

图4

候选基因分析曼哈顿图"

表3

候选基因注释"

染色体
Chr.
预测基因
Predictive genes
起始位置
Start
position
终止位置
End
position
描述
Description
功能
Function
PFAMs功能结构域
Functional domain of PFAMs
A04 Ahy_A04g019832 57,318,253 57,319,719 Asp_protease_2, Retrotrans_gag
A04 Ahy_A04g019833 57,392,913 57,401,960 清除剂mRNA解旋酶C端结合
Scavenger mRNA decapping enzyme C-term binding
HIT
A04 Ahy_A04g019834 57,405,637 57,406,221
A04 Ahy_A04g019835 57,410,765 57,415,546 肽基脯氨酰顺反异构酶
Peptidyl-prolyl cis-trans isomerase
FKBP_C, Ribosomal_S8e, TPR_1, TPR_2, TPR_8
A04 Ahy_A04g019837 57,493,974 57,498,876 肽基脯氨酰顺反异构酶
Peptidyl-prolyl cis-trans isomerase
FKBP15-2 FKBP_C

图5

候选基因表达分析"

[1] Hammons R O, Herman D, Stalker H T. Origin and Early History of the Peanut. Peanuts. Amsterdam: AOCS, 2016. pp 1-26.
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 付凌晖, 叶礼奇. 中国统计年鉴2023. 北京: 中国统计出版社, 2023. pp 386-403.
Fu L H, Ye L Q. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2023. pp 386-403 (in Chinese).
[4] 郝西, 张俊, 高伟, 易明林, 刘娟, 臧秀旺. 中国花生生产成本与收益分析. 农业科技通讯, 2023, (11): 150-153.
Hao X, Zhang J, Gao W, Yi M L, Liu J, Zang X W. Cost and benefit analysis of peanut production in China. Bull Agric Sci Technol, 2023, (11): 150-153 (in Chinese).
[5] 刘晓慧. 基于碳排放的我国花生绿色全要素生产率评价研究. 山东农业大学硕士学位论文, 山东泰安, 2023.
Liu X H. Evaluation of Green Total Factor Productivity of Peanut in China Based on Carbon Emissions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).
[6] Donald C M. A barley breeding programme based on an ideotype. J Agric Sci, 1979, 93: 261-269.
[7] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, Zhang H, He Z H, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. Plant Cell Environ, 2023, 46: 780-795.
[8] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527-535.
[9] Cheng Y X, Xiao F, Huang D Y, Yang Y, Cheng W D, Jin S C, Li G H, Ding Y F, Paul M J, Liu Z H. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Res, 2024, 306: 109223.
[10] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1-6.
doi: 10.11924/j.issn.1000-6850.casb20190900610
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1-6 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20190900610
[11] Dermail A, Fuengtee A, Lertrat K, Suwarno W B, Lübberstedt T, Suriharn K. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 2021, 12: 87.
[12] Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312.
[13] 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23-26.
Li X G, Guo F, Wan S B. Peanut ideotypes with high yield. J Peanut Sci, 2013, 42(3): 23-26 (in Chinese with English abstract).
[14] Falster D S, Westoby M. Plant height and evolutionary games. Trends Ecol Evol, 2003, 18: 337-343.
[15] Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467
[16] Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065-1073.
[17] 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 63-67.
Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 63-67 (in Chinese with English abstract).
[18] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
doi: 10.3864/j.issn.0578-1752.2015.18.019
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766 (in Chinese with English abstract).
[19] McKim S M. Moving on up - controlling internode growth. New Phytol, 2020, 226: 672-678.
doi: 10.1111/nph.16439 pmid: 31955426
[20] Li S C, Sun Z H, Sang Q, Qin C, Kong L P, Huang X, Liu H, Su T, Li H Y, He M L, Fang C, Wang L S, Liu S R, Liu B, Liu B H, Fu X D, Kong F J, Lu S J. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun, 2023, 14: 7939.
doi: 10.1038/s41467-023-42991-z pmid: 38040709
[21] Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell, 2012, 24: 66-79.
[22] Patil V, McDermott H I, McAllister T, Cummins M, Silva J C, Mollison E, Meikle R, Morris J, Hedley P E, Waugh R, Dockter C, Hansson M, McKim S M. APETALA2 control of barley internode elongation. Development, 2019, 146: dev170373.
[23] Li L, Cui S L, Dang P, Yang X L, Wei X J, Chen K, Liu L F, Chen C Y. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2022, 23: 403.
doi: 10.1186/s12864-022-08640-3 pmid: 35624420
[24] Zhang H, Chu Y, Dang P, Tang Y Y, Jiang T, Clevenger J P, Ozias-Akins P, Holbrook C, Wang M L, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet, 2020, 133: 2051-2061.
doi: 10.1007/s00122-020-03576-2 pmid: 32144466
[25] Wang J, Yan C X, Shi D C, Zhao X B, Yuan C L, Sun Q X, Mou Y F, Chen H N, Li Y, Li C J, Shan S H. The genetic base for peanut height-related traits revealed by a meta-analysis. Plants (Basel), 2021, 10: 1058.
[26] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540.
[27] 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-67.
Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 65-67 (in Chinese).
[28] Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920-934.
[29] Wang J B, Zhang Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform, 2021, 19: 629-640.
[30] Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z, Wan Y S. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017, 213: 57.
[31] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117
[32] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能. 遗传, 2014, 36: 536-546.
Yu Y L, Li Y J, Pang K Y, Zhang F J, Sun Q, Li W C, Meng Z D. Structure and biological functions of plant FKBP family. Hereditas, 2014, 36: 536-546 (in Chinese with English abstract).
[33] 李鹏云. FKBP家族相关蛋白晶体结构及功能研究. 清华大学博士学位论文, 北京, 2003.
Li P Y.Study on Crystal Structure and Function of FKBP Family Related Proteins. PhD Dissertation of Tsinghua University, Beijing, China, 2003 (in Chinese with English abstract).
[34] Harding M W, Galat A, Uehling D E, Schreiber S L. A receptor for the immunosuppressant FK506 is a Cis-trans peptidyl-prolyl isomerase. Nature, 1989, 341: 758-760.
[35] Henrichs S, Wang B J, Fukao Y, Zhu J S, Charrier L, Bailly A, Oehring S C, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J, 2012, 31: 2965-2980.
doi: 10.1038/emboj.2012.120 pmid: 22549467
[36] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui J C, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham J E, Moreau P, Napier J, Faure J D. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 2010, 22: 364-375.
[37] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016, 6: 39478.
doi: 10.1038/srep39478 pmid: 27995991
[38] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472
[39] Lyu J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Front Plant Sci, 2018, 9: 684.
[1] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-695.
[2] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[3] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[4] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[5] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[6] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[7] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[8] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[9] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[10] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[11] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[12] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[13] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[14] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[15] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .