作物学报 ›› 2025, Vol. 51 ›› Issue (2): 548-556.doi: 10.3724/SP.J.1006.2025.44090
• 研究简报 • 上一篇
赵斐斐1,2(), 李少雄2, 刘浩2, 李海芬2, 王润风2, 黄璐2, 余倩霞2, 洪彦彬2, 陈小平2, 鲁清2,*(
), 曹玉曼1,*(
)
ZHAO Fei-Fei1,2(), LI Shao-Xiong2, LIU Hao2, LI Hai-Fen2, WANG Run-Feng2, HUANG Lu2, YU Qian-Xia2, HONG Yan-Bin2, CHEN Xiao-Ping2, LU Qing2,*(
), CAO Yu-Man1,*(
)
摘要: 花生主茎节间和侧枝节间长度是影响单株产量的重要农艺性状。本研究以390份花生自然群体为研究材料, 在花生成熟期分别测量主茎与侧枝的第一、第二、第三节间长度。选用GAPIT3.0软件中的混合线性模型(PCA+K模型)进行全基因组关联分析。结果显示, 主茎、侧枝节间长度基本符合正态分布, 主茎节间与侧枝节间存在显著正相关。检测到63个主茎节间、侧枝节间长度相关位点。根据关联情况, 找到3个显著性关联位点和位点簇。在A04_57397319挖掘到1个与前人共定位的显著性关联位点, 并在该处预测到5个候选基因。本研究结果有助于解析花生主茎节间和侧枝节间的遗传基础和调控机制, 为指导花生株型改良奠定基础。
[1] | Hammons R O, Herman D, Stalker H T. Origin and Early History of the Peanut. Peanuts. Amsterdam: AOCS, 2016. pp 1-26. |
[2] | 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166. |
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115 |
|
[3] | 付凌晖, 叶礼奇. 中国统计年鉴2023. 北京: 中国统计出版社, 2023. pp 386-403. |
Fu L H, Ye L Q. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2023. pp 386-403 (in Chinese). | |
[4] | 郝西, 张俊, 高伟, 易明林, 刘娟, 臧秀旺. 中国花生生产成本与收益分析. 农业科技通讯, 2023, (11): 150-153. |
Hao X, Zhang J, Gao W, Yi M L, Liu J, Zang X W. Cost and benefit analysis of peanut production in China. Bull Agric Sci Technol, 2023, (11): 150-153 (in Chinese). | |
[5] | 刘晓慧. 基于碳排放的我国花生绿色全要素生产率评价研究. 山东农业大学硕士学位论文, 山东泰安, 2023. |
Liu X H. Evaluation of Green Total Factor Productivity of Peanut in China Based on Carbon Emissions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract). | |
[6] | Donald C M. A barley breeding programme based on an ideotype. J Agric Sci, 1979, 93: 261-269. |
[7] | Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, Zhang H, He Z H, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. Plant Cell Environ, 2023, 46: 780-795. |
[8] | Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527-535. |
[9] | Cheng Y X, Xiao F, Huang D Y, Yang Y, Cheng W D, Jin S C, Li G H, Ding Y F, Paul M J, Liu Z H. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Res, 2024, 306: 109223. |
[10] |
马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1-6.
doi: 10.11924/j.issn.1000-6850.casb20190900610 |
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1-6 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20190900610 |
|
[11] | Dermail A, Fuengtee A, Lertrat K, Suwarno W B, Lübberstedt T, Suriharn K. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 2021, 12: 87. |
[12] | Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312. |
[13] | 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23-26. |
Li X G, Guo F, Wan S B. Peanut ideotypes with high yield. J Peanut Sci, 2013, 42(3): 23-26 (in Chinese with English abstract). | |
[14] | Falster D S, Westoby M. Plant height and evolutionary games. Trends Ecol Evol, 2003, 18: 337-343. |
[15] |
Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467 |
[16] | Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065-1073. |
[17] | 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 63-67. |
Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 63-67 (in Chinese with English abstract). | |
[18] |
张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
doi: 10.3864/j.issn.0578-1752.2015.18.019 |
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766 (in Chinese with English abstract). | |
[19] |
McKim S M. Moving on up - controlling internode growth. New Phytol, 2020, 226: 672-678.
doi: 10.1111/nph.16439 pmid: 31955426 |
[20] |
Li S C, Sun Z H, Sang Q, Qin C, Kong L P, Huang X, Liu H, Su T, Li H Y, He M L, Fang C, Wang L S, Liu S R, Liu B, Liu B H, Fu X D, Kong F J, Lu S J. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun, 2023, 14: 7939.
doi: 10.1038/s41467-023-42991-z pmid: 38040709 |
[21] | Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell, 2012, 24: 66-79. |
[22] | Patil V, McDermott H I, McAllister T, Cummins M, Silva J C, Mollison E, Meikle R, Morris J, Hedley P E, Waugh R, Dockter C, Hansson M, McKim S M. APETALA2 control of barley internode elongation. Development, 2019, 146: dev170373. |
[23] |
Li L, Cui S L, Dang P, Yang X L, Wei X J, Chen K, Liu L F, Chen C Y. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2022, 23: 403.
doi: 10.1186/s12864-022-08640-3 pmid: 35624420 |
[24] |
Zhang H, Chu Y, Dang P, Tang Y Y, Jiang T, Clevenger J P, Ozias-Akins P, Holbrook C, Wang M L, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet, 2020, 133: 2051-2061.
doi: 10.1007/s00122-020-03576-2 pmid: 32144466 |
[25] | Wang J, Yan C X, Shi D C, Zhao X B, Yuan C L, Sun Q X, Mou Y F, Chen H N, Li Y, Li C J, Shan S H. The genetic base for peanut height-related traits revealed by a meta-analysis. Plants (Basel), 2021, 10: 1058. |
[26] | Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540. |
[27] | 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-67. |
Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 65-67 (in Chinese). | |
[28] | Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920-934. |
[29] | Wang J B, Zhang Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform, 2021, 19: 629-640. |
[30] | Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z, Wan Y S. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017, 213: 57. |
[31] |
Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117 |
[32] | 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能. 遗传, 2014, 36: 536-546. |
Yu Y L, Li Y J, Pang K Y, Zhang F J, Sun Q, Li W C, Meng Z D. Structure and biological functions of plant FKBP family. Hereditas, 2014, 36: 536-546 (in Chinese with English abstract). | |
[33] | 李鹏云. FKBP家族相关蛋白晶体结构及功能研究. 清华大学博士学位论文, 北京, 2003. |
Li P Y.Study on Crystal Structure and Function of FKBP Family Related Proteins. PhD Dissertation of Tsinghua University, Beijing, China, 2003 (in Chinese with English abstract). | |
[34] | Harding M W, Galat A, Uehling D E, Schreiber S L. A receptor for the immunosuppressant FK506 is a Cis-trans peptidyl-prolyl isomerase. Nature, 1989, 341: 758-760. |
[35] |
Henrichs S, Wang B J, Fukao Y, Zhu J S, Charrier L, Bailly A, Oehring S C, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J, 2012, 31: 2965-2980.
doi: 10.1038/emboj.2012.120 pmid: 22549467 |
[36] | Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui J C, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham J E, Moreau P, Napier J, Faure J D. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 2010, 22: 364-375. |
[37] |
Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016, 6: 39478.
doi: 10.1038/srep39478 pmid: 27995991 |
[38] |
Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472 |
[39] | Lyu J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Front Plant Sci, 2018, 9: 684. |
[1] | 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-695. |
[2] | 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811. |
[3] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[4] | 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404. |
[5] | 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333. |
[6] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[7] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[8] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[9] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[10] | 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121. |
[11] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[12] | 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854. |
[13] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[14] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[15] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
|