作物学报 ›› 2025, Vol. 51 ›› Issue (3): 568-585.doi: 10.3724/SP.J.1006.2025.44051
徐建霞(), 丁延庆(
), 曹宁, 程斌, 高旭, 李文贞, 张立异(
)
XU Jian-Xia(), DING Yan-Qing(
), CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi(
)
摘要:
适当降低株高可以提高植物的养分利用效率和抗倒伏性, 对高粱的高产和稳产具有重要意义。为揭示高粱株高遗传机制, 本研究以242份中国高粱为研究对象, 利用2,015,850个单核苷酸多态性(SNP)标记, 在7个不同环境条件下对株高、节间数及节间长度进行全基因组关联分析(Genome-wide association study, GWAS)。表型调查表明, 株高、节间数和节间长度的表型变异系数在13.47%~30.06%之间, 在所有环境下的偏度和峰度的绝对值均小于1。利用2种不同的关联模型(Blink和FarmCPU)对株高、节间数及节间长度进行GWAS分析, 在10条染色体上共鉴定出118个与这3个性状显著相关的数量性状核苷酸(QTN)。其中, 与株高、节间数及节间长度显著相关的QTN分别为60个、37个和32个, 株高与节间数、节间长度共定位QTN分别有8个和3个。通过对候选基因的序列分析和功能注释, 在12个QTN置信区间或附近鉴定出14个候选基因, 它们与水稻和玉米中参与糖代谢、激素合成与信号传递以及细胞分裂的基因同源。选择性消除分析揭示, 位于1号染色体的候选基因Sobic.001G510400在中国南北高粱群体中受到强烈选择, 形成了以北方矮秆高粱为主的单倍型Hap1和以南方高秆高粱为主的单倍型Hap2。携有Hap1的北方种质871255和携有Hap2的南方种质红缨子之间, 该基因表达存在显著差异。本研究结果为中国高粱品种株高遗传改良提供了理论依据。
[1] | 唐三元, 谢旗. 高粱: 小作物大用途. 生物技术通报, 2019, 35(5): 1. |
Tang S Y, Xie Q. Sorghum-a small crop with great use. Biotechnol Bull, 2019, 35(5): 1. (in Chinese) | |
[2] | 高士杰, 刘晓辉, 李继洪. 高粱高产育种应重视株型和穗结构性状的改良. 种子, 2007, 26(3): 83-84. |
Gao S J, Liu X H, Li J H. Paying much attention to the improvement of plant type and spike structure in high-yielding breeding of Sorghum. Seed, 2007, 26(3): 83-84. (in Chinese with English abstract) | |
[3] |
郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析. 作物学报, 2018, 44: 522-532.
doi: 10.3724/SP.J.1006.2018.00522 |
Guo H P, Sun G Y, Zhang X X, Yan P S, Liu K, Xie H L, Tang J H, Ding D, Li W H. QTL analysis of under-ear internode length based on SSSL population. Acta Agron Sin, 2018, 44: 522-532. (in Chinese with English abstract) | |
[4] | 苏舒, 董维, 游录鹏, 黄守程, 戚金亮, 陆桂华, 黄应华, 杨永华. 高粱株高性状的QTL定位初步分析. 江苏农业科学, 2012, 40(3): 19-21. |
Su S, Dong W, You L P, Huang S C, Qi J L, Lu G H, Huang Y H, Yang Y H. Preliminary analysis on QTL mapping of Sorghum plant height traits. Jiangsu Agric Sci, 2012, 40(3): 19-21. (in Chinese) | |
[5] | Kong W Q, Kim C, Zhang D, Guo H, Tan X, Jin H Z, Zhou C B, Shuang L S, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, Paterson A H. Genotyping by sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines improves sensitivity and resolution of QTL detection. G3 (Bethesda), 2018, 8: 2563-2572. |
[6] |
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Fiona W W, Omollo E A, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in Sorghum using the Japanese Landrace takakibi NOG. Plant Cell Physiol, 2020, 61: 1262-1272.
doi: 10.1093/pcp/pcaa056 pmid: 32353144 |
[7] |
Takanashi H, Shichijo M, Sakamoto L, Kajiya-Kanegae H, Iwata H, Sakamoto W, Tsutsumi N. Genetic dissection of QTLs associated with spikelet-related traits and grain size in Sorghum. Sci Rep, 2021, 11: 9398.
doi: 10.1038/s41598-021-88917-x pmid: 33931706 |
[8] |
徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位. 生物技术通报, 2023, 39(7): 185-194.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1510 |
Xu J X, Ding Y Q, Feng Z, Cao N, Cheng B, Gao X, Zou G H, Zhang L Y. QTL mapping of Sorghum plant height and internode numbers based on super-GBS technique. Biotechnol Bull, 2023, 39(7): 185-194. (in Chinese with English abstract) | |
[9] | Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1, a regulator of Sorghum stem internode length. PLoS One, 2016, 11: e0151271. |
[10] |
Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856 |
[11] | Liu H J, Yan J. Crop genome-wide association study: a harvest of biological relevance. Plant J: Cell Mol Biol, 2019, 97: 8-18. |
[12] | Enyew M, Feyissa T, Carlsson A S, Tesfaye K, Hammenhag C, Seyoum A, Geleta M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Front Plant Sci, 2022, 13: 999692. |
[13] | Zhao J, Mantilla Perez M B, Hu J Y, Salas Fernandez M G. Genome-wide association study for nine plant architecture traits in Sorghum. Plant Genome, 2016, 9. DOI: 10.3835/plantgenome2015.06.0044. |
[14] | Wondimu Z, Dong H X, Paterson A H, Worku W, Bantte K. Genome-wide association study reveals genomic loci influencing agronomic traits in Ethiopian Sorghum (Sorghum bicolor (L.) Moench) landraces. Mol Breed, 2023, 43: 32. |
[15] |
Hirano K, Kawamura M, Araki-Nakamura S, Fujimoto H, Ohmae- Shinohara K, Yamaguchi M, Fujii A, Sasaki H, Kasuga S, Sazuka T. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep, 2017, 7: 126.
doi: 10.1038/s41598-017-00096-w pmid: 28273925 |
[16] |
Hilley J L, Weers B D, Truong S K, McCormick R F, Mattison A J, McKinley B A, Morishige D T, Mullet J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci Rep, 2017, 7: 4616.
doi: 10.1038/s41598-017-04609-5 pmid: 28676627 |
[17] | Li X, Li X R, Fridman E, Tesso T T, Yu J M. Dissecting repulsion linkage in the dwarfing gene Dw3 region for Sorghum plant height provides insights into heterosis. Proc Natl Acad Sci USA, 2015, 112: 11823-11828. |
[18] | 王平, 丛玲, 朱振兴, 张丽霞, 张曦. 高粱矮化基因Dw3/dw3对株高及其他农艺性状的影响. 辽宁农业科学, 2019, (5): 12-15. |
Wang P, Cong L, Zhu Z X, Zhang L X, Zhang X. Effects of dwarfing gene Dw3/dw3 on plant height and other agronomic traits of Sorghum bicolor. Liaoning Agric Sci, 2019, (5): 12-15. (in Chinese with English abstract) | |
[19] | Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458. |
[20] |
段国旗, 吕娜, 石颖怡, 张怀, 李斌峰, 侯留飞, 许文秀, 闫慧莉, 何振艳, 平俊爱. 高粱株高相关基因SbPH11分子标记的开发和应用. 植物遗传资源学报, 2024, 25: 111-119.
doi: 10.13430/j.cnki.jpgr.20230611002 |
Duan G Q, Lyu N, Shi Y Y, Zhang H, Li B F, Hou L F, Xu W X, Yan H L, He Z Y, Ping J A. Development and application of molecular markers of Sorghum plant height related gene SbPH11. J Plant Genet Resour, 2024, 25: 111-119. (in Chinese with English abstract) | |
[21] |
Zhang L Y, Xu J X, Ding Y Q, Cao N, Gao X, Feng Z, Li K Y, Cheng B, Zhou L B, Ren M J, Tao Y Z, Zou G H. GWAS of grain color and tannin content in Chinese Sorghum based on whole-genome sequencing. Theor Appl Genet, 2023, 136: 77.
doi: 10.1007/s00122-023-04307-z pmid: 36952041 |
[22] | 陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. |
Lu P. Descriptors and Data Standard for Sorghum [Sorghum bicolor (L.) Moench]. Beijing: China Agriculture Press, 2006. (in Chinese) | |
[23] |
曹永策, 李曙光, 张新草, 孔杰杰, 赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析. 中国农业科学, 2020, 53: 683-694.
doi: 10.3864/j.issn.0578-1752.2020.04.002 |
Cao Y C, Li S G, Zhang X C, Kong J J, Zhao T J. Construction of genetic map and mapping QTL for flowering time in A summer planting soybean recombinant inbred line population. Sci Agric Sin, 2020, 53: 683-694. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.04.002 |
|
[24] | 王萍. 大豆四向重组自交系株高和主茎节数及其密度响应的QTL/QTN定位. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2021. |
Wang P. QTL/QTN Mapping of Plant Height, Main Stem Nodes and Their Density Responses of Soybean Four-way Recombinant Inbred Lines. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract) | |
[25] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, Group G P A. The variant call format and VCF tools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[26] |
Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98: 187-203.
doi: 10.1007/s11103-018-0763-4 pmid: 30327994 |
[27] | Mizuno H, Kasuga S, Kawahigashi H. The Sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels, 2016, 9: 127. |
[28] | Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in Sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451-5462. |
[29] | Guan Y N, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in Sorghum. Euphytica, 2011, 182: 431-440. |
[30] | Parh D K. DNA-based Markers for Ergot Resistance in Sorghum. PhD Dissertation of the University of Queensland, Queensland, Australia, 2005. |
[31] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767. |
[32] | Zhang J, Liu X Q, Li S Y, Cheng Z K, Li C Y. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9: e88068. |
[33] | Liu H H, Liu H Q, Zhou L N, Lin Z W. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Plant Sci, 2019, 283: 135-146. |
[34] | Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M. ACO1 a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ, 2010, 33: 805-815. |
[35] |
Itoh H, Izawa T. A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. Plant Signal Behav, 2011, 6: 1932-1936.
doi: 10.4161/psb.6.12.18207 pmid: 22101345 |
[36] |
Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H L. Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet Sorghum. Phytopathology, 2015, 105: 1522-1528.
doi: 10.1094/PHYTO-06-15-0136-R pmid: 26574655 |
[37] | Bai C M, Wang C Y, Wang P, Zhu Z X, Cong L, Li D, Liu Y F, Zheng W J, Lu X C. QTL mapping of agronomically important traits in Sorghum (Sorghum bicolor L.). Euphytica, 2017, 213: 285. |
[38] |
王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究. 生物技术通报, 2023, 39(8): 43-51.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0504 |
Wang T Y, Wang R H, Wang X Q, Zhang R Y, Xu R B, Jiao Y Y, Sun X, Wang J D, Song W, Zhao J R. Research in maize dwarf genes and dwarf breeding. Biotechnol Bull, 2023, 39(8): 43-51. (in Chinese with English abstract) | |
[39] |
Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi D V N, Mehtre S P, Seetharama N, Patil J V. Mapping QTL for grain yield and other agronomic traits in post-rainy Sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet, 2013, 126: 1921-1939.
doi: 10.1007/s00122-013-2107-8 pmid: 23649648 |
[40] |
Sawers R J H, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol, 2002, 130: 155-163.
pmid: 12226496 |
[41] | Wu S Y, Xie Y R, Zhang J J, Ren Y L, Zhang X, Wang J L, Guo X P, Wu F Q, Sheng P K, Wang J, Wu C Y, Wang H Y, Huang S J, Wan J M. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell, 2015, 27: 2829-2845. |
[42] |
Mocoeur A, Zhang Y M, Liu Z Q, Shen X, Zhang L M, Rasmussen S K, Jing H C. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet Sorghum (Sorghum bicolour). Theor Appl Genet, 2015, 128: 1685-1701.
doi: 10.1007/s00122-015-2538-5 pmid: 25982132 |
[43] |
Song X Q, Zhang B C, Zhou Y H. Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signal Behav, 2011, 6: 1097-1100.
doi: 10.4161/psb.6.8.16379 pmid: 21822061 |
[44] | Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A large-scale genome-wide association analyses of Ethiopian Sorghum Landrace collection reveal loci associated with important traits. Front Plant Sci, 2019, 10: 691. |
[45] | Madhusudhana R, Patil J V. A major QTL for plant height is linked with bloom locus in Sorghum [Sorghum bicolor (L.)] Moench. Euphytica, 2013, 191: 259-268. |
[46] |
Srinivas G, Satish K, Madhusudhana R, Reddy R N, Mohan S M, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in Sorghum. Theor Appl Genet, 2009, 118: 1439-1454.
doi: 10.1007/s00122-009-0993-6 pmid: 19274449 |
[47] |
Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J M, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497 |
[48] |
Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H. Alignment of genetic maps and QTLs between inter- and intra-specific Sorghum populations. Theor Appl Genet, 2006, 112: 1295-1305.
pmid: 16491426 |
[49] |
Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J, Xia K, Fu X D, Luo D, Chu C C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006, 47: 181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061 |
[50] | Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, Yang R C. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice. Plant Mol Biol, 2006, 60: 87-94. |
[51] | Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J, 2010, 29: 1916-1927. |
[52] | Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206. |
[53] |
Van der Knaap E, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532 |
[54] | Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557. |
[55] |
邹桂花, 丁延庆, 徐建霞, 曹宁, 陈合云, 刘合芹, 郑学强, 张立异. 高粱千粒重全基因组关联分析和候选基因预测. 核农学报, 2022, 36: 2124-2136.
doi: 10.11869/j.issn.100-8551.2022.11.2124 |
Zou G H, Ding Y Q, Xu J X, Cao N, Chen H Y, Liu H Q, Zheng X Q, Zhang L Y. Genome-wide association analysis of thousand grain weight and candidate gene prediction in a Sorghum sequenced association panel. J Nucl Agric Sci, 2022, 36: 2124-2136. (in Chinese with English abstract) | |
[56] |
丁延庆, 汪灿, 徐建霞, 高旭, 程斌, 曹宁, 张立异. 基于高密度遗传图谱对高粱穗部性状的QTL定位. 植物遗传资源学报, 2023, 24: 1122-1132.
doi: 10.13430/j.cnki.jpgr.20230201002 |
Ding Y Q, Wang C, Xu J X, Gao X, Cheng B, Cao N, Zhang L Y. QTL identifying for panicle architecture-related traits in Sorghum based on high-density genetic map. J Plant Genet Resour, 2023, 24: 1122-1132. (in Chinese with English abstract) |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727. |
[3] | 孙美红, 王彩琴, 王蓉, 白文斌, 高振峰. Bacillus velezensis G-1·脂肽悬浮种衣剂的制备及其对高粱丝黑穗病菌的防侵染效果[J]. 作物学报, 2024, 50(6): 1467-1485. |
[4] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[5] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
[6] | 陈玉章, 吴松果, 卢成霖, 李瑞, 龚利娟, 文悦, 宁佳欣, 吴宇涵. 条带垄覆对西南黄壤坡耕地径流和高粱水分利用的影响[J]. 作物学报, 2024, 50(5): 1325-1340. |
[7] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[8] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[9] | 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622. |
[10] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[11] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[12] | 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997. |
[13] | 陈晨, 程宇坤, 王伟, 任毅, 张海燕, 陈慧波, 耿洪伟. 水旱条件下小麦持绿相关性状QTL定位[J]. 作物学报, 2024, 50(11): 2684-2698. |
[14] | 赵阳, 李龙, 杨进文, 景蕊莲, 孙黛珍, 王景一. 小麦E3泛素连接酶基因TaSINA-3A与多种环境下的株高和千粒重相关[J]. 作物学报, 2024, 50(10): 2654-2664. |
[15] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
|