欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 943-957.doi: 10.3724/SP.J.1006.2025.44167

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生荚果力学特性评鉴及早熟种质筛选

迟晓元1(), 毕竞男1, 赵健鑫1,2, 陈娜1, 潘丽娟1, 姜骁1, 殷祥贞1, 赵旭红1, 马俊卿1, 许静1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2青岛科技大学生物工程学院, 山东青岛 266042
  • 收稿日期:2024-09-30 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-18
  • 通讯作者: 许静, E-mail: xu_jing_cool@yeah.net
  • 作者简介:迟晓元, E-mail: chi000@126.com第一联系人:

    **同等贡献

  • 基金资助:
    山东省自然科学基金项目(ZR2021QC172);山东省自然科学基金项目(ZR2023QC146);新疆维吾尔自治区重大科技专项(2022A02008-3);泰山学者工程专项(tstp20240523);泰山学者工程专项(tsqn202312292);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);山东省重点研发计划(2024LZGC035);山东省重点研发计划(乡村振兴科技创新提振行动计划)(2022TZXD0031);山东省农业科学院农业科技创新工程(CXGC2023F20);山东省农业科学院农业科技创新工程(CXGC2024F20);浙江省数字旱粮重点实验室培育开放课题(2022E10012);农业农村部油料作物生物学与遗传育种重点实验室项目(KF2024007)

Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm

CHI Xiao-Yuan1(), BI Jing-Nan1, ZHAO Jian-Xin1,2, CHEN Na1, PAN Li-Juan1, JIANG Xiao1, YIN Xiang-Zhen1, ZHAO Xu-Hong1, MA Jun-Qing1, XU Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-09-30 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-18
  • Contact: E-mail: xu_jing_cool@yeah.net
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Natural Science Fund of Shangdong Province(ZR2021QC172);Natural Science Fund of Shangdong Province(ZR2023QC146);Major Scientific and Technological Project in Xinjiang(2022A02008-3);Taishan Scholars Program(tstp20240523);Taishan Scholars Program(tsqn202312292);China Agriculture Research System of MOF and MARA(CARS-13);Research and Development Program of Shandong Province(2024LZGC035);Key Research and Development Plan of Shandong Province (Action Plan to Boost Scientific and Technological Innovation in Rural Revitalization)(2022TZXD0031);Innovation Project of SAAS(CXGC2023F20);Innovation Project of SAAS(CXGC2024F20);Key Laboratory of Digital Upland Crops of Zhejiang Province(2022E10012);Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs(KF2024007)

摘要:

花生荚果的力学特性是花生机械化收获的重要参考指标, 早熟品种的筛选是满足市场需求和提高农业生产效益的重要举措。本研究以499份来自世界各地的花生种质资源为材料, 对其果柄强度、荚果破壳力和成熟率等指标进行测定和分析。果柄强度测定结果显示, 499份种质材料之间变异广泛(3.55~15.54 N), 265份种质的成熟荚果果柄强度(7.13 N)大于未成熟荚果果柄强度(6.99 N), 38份种质材料的果柄强度在不同成熟度之间存在显著或极显著差异; 平均秧-柄脱落力(7.51 N)大于果-柄脱落力(7.11 N), 48份种质材料在秧-柄节点的脱落力显著或极显著高于果-柄节点; 荚果侧压破壳力>正压破壳力>立压破壳力, 3个方向的荚果破壳力两两之间均存在极显著差异; 花生荚果的果柄强度与果-柄脱落力的相关性最大(r = 0.99, P < 0.01); 花生荚果力学特性的13个性状综合成为4个主成分因子, 累计贡献率为63.83%; 多元回归分析表明, 果-柄脱落力、果-柄脱落百分率、荚果层厚度、未熟荚果果柄强度和秧-柄脱落力是影响果柄强度的主要性状; 最终筛选出16份荚果力学特性优异、早熟的优异种质资源, 为后续培育早熟且适应机械化收获的花生新品种提供参考。

关键词: 花生, 荚果力学特性, 果柄强度, 荚果破壳力, 成熟度

Abstract:

The mechanical properties of peanut pods are critical reference indicators for mechanized harvesting, and selecting early-maturing varieties is a key strategy to meet market demand and improve agricultural production efficiency. In this study, we measured and analyzed peg strength, pod rupture force, and maturity rates in 499 peanut germplasm resources from around the world. The results revealed wide variation in peg strength (3.55-15.54 N), with the peg strength of mature pods (7.13 N) in 265 varieties being greater than that of immature pods (6.99 N). Significant or highly significant differences in peg strength across different maturity stages were observed in 38 materials. The force required to detach the plant from its petiole (7.51 N) was higher than that required to detach the pod from its petiole (7.11 N), with 48 peanut germplasm resources showing significantly or highly significantly higher plant-petiole detachment forces. Significant differences in pod rupture force were detected across three orientations: the lowest rupture force occurred when pods were positioned vertically, and the highest when positioned laterally. Peg strength was most strongly correlated with pod-petiole detachment force (r = 0.99, P < 0.01). Principal component analysis extracted four main factors related to mechanical properties, with a cumulative contribution rate of 63.83%. Multiple regression analysis identified pod-petiole detachment force, pod-petiole detachment ratio, pod layer thickness, peg strength of immature pods, and plant-petiole detachment force as the main factors influencing peg strength. Ultimately, 16 germplasm resources with early maturity and superior pod mechanical properties were identified. This study provides valuable insights for the development of early-maturing peanut varieties well-suited for mechanized harvesting.

Key words: peanut, pod mechanical properties, peg strength, pod rupture force, maturity

表1

不同地理来源的种质材料份数、果柄强度、荚果破壳力和成熟率均值"

地理分布
Geographic
distribution
份数
No. accessions
果柄强度a
Peg strengtha
(N)
正压破壳力b
Transverse
pressureb (N)
侧压破壳力c
Lateral
pressurec (N)
立压破壳力d
Vertical
pressured (N)
成熟率e
Maturing ratee (%)
美国
USA
259 6.63 41.01 43.33 29.43 62.23
日本
Japan
1 7.82 41.85 46.20 31.16 88.00
澳大利亚
Australia
1 8.88 40.45 45.34 26.58 28.33
中国China 北方North 211 7.56 41.13 43.93 28.77 80.88
南方South 27 7.87 38.32 42.60 28.65 80.91

表2

不同花生种质材料果柄强度、成熟率、果柄脱落率、结实范围、果柄长度均值与变幅"

性状Trait 均值±标准差 Mean ± SD 变幅Range
果柄强度 Peg strength (N) 7.10 ± 1.91 3.55-15.54
成熟荚果果柄强度 Mature pods peg strength (N) 7.13 ± 2.02 3.49-15.97
未熟荚果果柄强度Immature pods peg strength (N) 6.99 ± 2.29 1.35-17.45
果-柄脱落力 Pod-petiole dropping force (N) 7.11 ± 1.96 3.67-15.73
秧-柄脱落力 Plant-petiole dropping force (N) 7.51 ± 2.45 1.57-20.96
成熟率 Maturing rate (%) 71.10 ± 0.21 0-100.00
果-柄脱落百分率 Ratio of pod-petiole dropping (%) 84.90 ± 0.10 20.00-100.00
正压破壳力 Transverse pressure (N) 53.64 ± 8.04 30.69-80.90
侧压破壳力 Lateral pressure (N) 58.23 ± 8.80 31.94-87.72
立压破壳力 Vertical pressure (N) 38.97 ± 6.78 21.56-68.68
荚果层高度 Pod layer height (cm) 10.60 ± 2.35 5.88-21.17
荚果层厚度 Pod layer thickness (cm) 10.72 ± 1.17 7.42-14.17
果柄长度 Peg length (cm) 5.18 ± 0.95 2.91-8.58

图1

不同花生种质材料果柄强度分析 A: 不同花生种质材料果柄强度分级; B: 499份花生材料果柄强度分布; C: 4年期间果柄强度显著性; D: 4年期间499份花生种质材料两个断裂节点的果柄强度分布, 红色三角表示果柄强度在两节点达到显著差异的种质; E: 499份花生种质材料的果柄脱落率; F: 4年期间499份花生种质材料成熟和未成熟荚果的果柄强度分布, 红色三角表示果柄强度在两种成熟度间达到显著差异的种质; G: 不同国家的种质材料果柄强度比较; H: 不同地理来源的种质材料果柄强度比较。ns表示在0.05显著水平下不显著; *表示0.05显著水平; **表示0.01显著水平。"

图2

不同花生种质材料成熟率 A: 2020-2023年花生种质资源成熟率变幅; B: 499份花生种质2个断裂节点的不同成熟率果柄强度显著性分析; C: 不同国家的种质材料成熟率比较; D: 不同地理来源的种质材料成熟率比较; E: 499份花生种质2020-2023年成熟率; F:花生种质资源不同成熟率所占比例的变异系数。ns表示在0.05显著水平下不显著; *表示0.05显著水平; **表示0.01显著水平。"

图3

不同花生种质材料荚果破壳力和结实范围分析 A: 不同花生种质材料不同方向荚果破壳力分布; B: 不同花生种质材料不同方向荚果破壳力比较; C: 不同花生种质材料结实范围分布; D: 不同花生种质材料果柄长度分布; E: 不同国家的种质材料荚果破壳力比较; F: 不同地理来源的种质材料荚果破壳力比较; G: 2020-2023年不同花生种质材料不同方向荚果破壳力; H: 2020-2023年不同花生种质材料结实范围; I: 2020-2023年不同花生种质材料果柄长度。ns表示在0.05显著水平下不显著; *表示0.05显著水平; **表示0.01显著水平。"

表3

不同花生种质材料力学特性的主成分分析"

性状
Trait
主成分Principal component
1 2 3 4
果柄强度 Peg strength (N) 0.89 −0.17 0.17 0.05
成熟荚果果柄强度 Mature pods peg strength (N) 0.75 −0.10 −0.07 0.02
未熟荚果果柄强度 Immature pods peg strength (N) 0.72 −0.08 0.06 −0.03
果-柄脱落力 Pod-petiole dropping force (N) 0.89 −0.19 0.16 0.06
秧-柄脱落力 Plant-petiole dropping force (N) 0.23 −0.09 −0.15 −0.72
成熟率 Maturing rate (%) 0.48 0.03 −0.27 0.48
果-柄脱落百分率 Ratio of pod-petiole dropping (%) −0.35 0.43 −0.24 0.41
正压破壳力 Transverse pressure (N) 0.19 0.83 0.24 −0.09
侧压破壳力 Lateral pressure (N) 0.20 0.81 0.08 0
立压破壳力 Vertical pressure (N) 0.26 0.70 0.20 −0.19
荚果层高度 Pod layer height (cm) −0.42 −0.11 0.65 −0.13
荚果层厚度 Pod layer thickness (cm) 0.13 0 0.68 0.23
果柄长度 Peg length (cm) −0.21 −0.30 0.62 0.15
特征值 Eigenvalue 3.45 2.22 1.58 1.05
贡献率 Contribution rate (%) 26.54 17.04 12.15 8.10
累计贡献率 Accumulative contribution rate (%) 26.54 43.58 55.73 63.83

图4

不同性状间相关性分析 T1~T13分别为果柄强度、未熟荚果果柄强度、成熟荚果果柄强度、果-柄脱落力、秧-柄脱落力、成熟率、果柄脱落百分率、正压破壳力、侧压破壳力、立压破壳力、荚果层高度、荚果层厚度、果柄长度。*、**、***分别表示在0.05、0.01、0.001概率水平显著相关。"

表4

花育系列优质早熟花生品种"

品种名称Variety 成熟率Maturing rate (%) 果柄强度Peg strength (N)
花育20号 Huayu 20 87.04 5.83
花育915 Huayu 915 95.00 11.10
花育918 Huayu 918 96.67 7.27
花育60 Huayu 60 81.67 7.96
花育55号 Huayu 55 86.00 5.06
花育611 Huayu 611 85.00 8.96
花育24号 Huayu 24 83.33 7.87
花育612 Huayu 612 85.00 9.30
花育919 Huayu 919 86.44 5.81
花育912 Huayu 912 90.00 7.96
花育30号 Huayu 30 86.00 8.66
花育17号 Huayu 17 96.67 5.84
花育23号 Huayu 23 80.39 5.93
花育26号 Huayu 26 86.21 5.80
花育29号 Huayu 29 96.67 8.02
花育34号 Huayu 34 81.67 5.26
花育38号 Huayu 38 82.05 10.26
花育911 Huayu 911 89.36 10.31
花育9120 Huayu 9120 85.45 9.24
花育9122 Huayu 9122 85.00 9.58
鲁花14号 Luhua 14 85.00 9.73

表5

荚果力学特性优异、早熟优异花生种质资源"

品种名称
Variety
果柄强度
Peg strength (N)
荚果破壳力
Pod rupture force (N)
成熟率
Maturing rate (%)
日花4号 Rihua 4 6.03 31.04 81.82
花育661 Huayu 661 7.55 28.79 91.67
冀9814 Ji 9814 8.53 31.43 88.33
花育30号 Huayu 30 8.66 28.41 86.00
DUS88 8.26 27.75 88.33
驻20150 Zhu 20150 7.15 28.15 86.67
豫花9326 Yuhua 9326 8.21 34.42 83.33
泉0806 Quan 0806 7.47 32.44 95.00
花育962 Huayu 962 8.51 30.97 93.33
DUS217 7.51 32.93 96.61
冀花13 Jihua 13 7.35 29.25 90.00
花育912 Huayu 912 7.96 27.02 90.00
青农引进资源16 Qingnongyinjinziyuan 16 7.66 26.43 81.36
花育60 Huayu 60 7.96 31.95 81.67
DUS152 8.38 23.30 82.22
青农引进资源10 Qingnongyinjinziyuan 10 7.30 28.61 84.75
[1] 冯喜梅, 聂江文, 彭良斌, 臧华栋, 杨亚东, 曾昭海. 全球花生生产和贸易的时空动态变化研究. 花生学报, 2021, 50(4): 1-8.
Feng X M, Nie J W, Peng L B, Zang H D, Yang Y D, Zeng Z H. Spatio-temporal dynamics of global peanut production and trade. J Peanut Sci, 2021, 50(4): 1-8 (in Chinese with English abstract).
[2] 许静, 潘丽娟, 陈娜, 王通, 陈明娜, 王冕, 禹山林, 丁红, 孙伟, 赵孝东, 等. 不同花生荚果力学特性研究及优异品系筛选. 中国油料作物学报, 2021, 43: 803-815.
Xu J, Pan L J, Chen N, Wang T, Chen M N, Wang M, Yu S L, Ding H, Sun W, Zhao X D, et al. Pods mechanical property of different peanuts and identification of elite varieties (lines). Chin J Oil Crop Sci, 2021, 43: 803-815 (in Chinese with English abstract).
[3] 申海洋, 罗伟文, 吴峰, 顾峰玮, 杨红光, 胡志超. 花生机械化收获装备与技术研究进展. 农业机械学报, 2024, 55(8): 21-38.
Shen H Y, Luo W W, Wu F, Gu F W, Yang H G, Hu Z C. Research progress on mechanized harvesting equipment and technology for peanuts. Trans CSAM, 2024, 55(8): 21-38 (in Chinese with English abstract).
[4] Pattee H E, Johns E B, Singleton J A, Sanders T H. Composition changes of peanut fruit parts during Maturation1. Peanut Sci, 1974, 1: 57-62.
[5] Upadhyaya H D, Reddy L J, Gowda C L L, Singh S. Identification of diverse groundnut germplasm: sources of early maturity in a core collection. Field Crops Res, 2006, 97: 261-271.
[6] 沈一, 刘永惠, 陈志德. 不同花生品种(系)果柄拉力强度测试和荚果主要性状调查. 江苏农业科学, 2012, 40(10): 82-83.
Shen Y, Liu Y H, Chen Z D. Tensile strength test of different peanut varieties (lines) and investigation of main pod characters. Jiangsu Agric Sci, 2012, 40(10): 82-83 (in Chinese).
[7] 刘志侠, 吴国振, 于永强, 王京, 康智伟, 董占伟, 杨德旭, 何凤宇. 花生荚果生物力学特性研究. 沈阳农业大学学报, 2023, 54: 732-740.
Liu Z X, Wu G Z, Yu Y Q, Wang J, Kang Z W, Dong Z W, Yang D X, He F Y. Study on biomechanical characteristics of peanut pod. J Shenyang Agric Univ, 2023, 54: 732-740 (in Chinese with English abstract).
[8] 张晓, 陈玲, 孙雅文, 司彤, 张晓军, 王月福, 邹晓霞, 王铭伦. 不同落果特性花生品种荚果性状及果壳强度的研究. 花生学报, 2019, 48(3): 60-64.
Zhang X, Chen L, Sun Y W, Si T, Zhang X J, Wang Y F, Zou X X, Wang M L. The research on pod traits and shell strength of peanut varieties with different fruit drop characteristics. J Peanut Sci, 2019, 48(3): 60-64 (in Chinese with English abstract).
[9] 孙雅文, 邹晓霞, 相云秋, 张晓军, 王月福, 王铭伦. 不同落果特性花生品种子房柄力学性能的研究. 花生学报, 2017, 46(1): 33-37.
Sun Y W, Zou X X, Xiang Y Q, Zhang X J, Wang Y F, Wang M L. The research on gynophores' mechanical properties of peanut varieties with different peanut-dropping characteristics. J Peanut Sci, 2017, 46(1): 33-37 (in Chinese with English abstract).
[10] 迟晓元, 李昊远, 陈明娜, 潘丽娟, 郝翠翠, 王冕, 王通, 陈娜, 禹山林. 76个花生品种(系)果柄强度的研究. 花生学报, 2018, 47(3): 14-18.
Chi X Y, Li H Y, Chen M N, Pan L J, Hao C C, Wang M, Wang T, Chen N, Yu S L. Analysis on peg strength of 76 peanut varieties. J Peanut Sci, 2018, 47(3): 14-18 (in Chinese with English abstract).
[11] 迟晓元, 王东伟, 孙伟, 许静, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 王冰, 等. 92个花生品种(系)的果柄和荚果力学特性研究. 花生学报, 2020, 49(1): 31-40.
Chi X Y, Wang D W, Sun W, Xu J, Chen M N, Pan L J, Chen N, Wang T, Wang M, Wang B, et al. Mechanical properties of pegs and pods in 92 peanut varieties. J Peanut Sci, 2020, 49(1): 31-40 (in Chinese with English abstract).
[12] 丁红, 张冠初, 许静, 修明霞, 徐扬, 郭庆, 张智猛, 于遒功. 适宜机械化种植的花生高产品种筛选与评价. 花生学报, 2022, 51(2): 16-24.
Ding H, Zhang G C, Xu J, Xiu M X, Xu Y, Guo Q, Zhang Z M, Yu Q G. Screening and evaluation of high yield peanut varieties for mechanized planting properties. J Peanut Sci, 2022, 51(2): 16-24 (in Chinese with English abstract).
[13] 鲁清, 梁炫强, 陈小平, 李少雄, 刘浩, 周桂元, 刘海燕, 李海芬, 洪彦彬. 花生落荚、裂荚和裂仁特性评鉴及优异种质筛选. 植物遗传资源学报, 2020, 21: 1102-1111.
doi: 10.13430/j.cnki.jpgr.20191231001
Lu Q, Liang X Q, Chen X P, Li S X, Liu H, Zhou G Y, Liu H Y, Li H F, Hong Y B. Evaluation on traits of pod abscission, dehiscence and kernel cracking of peanut and identification of elite germplasm. J Plant Genet Resour, 2020, 21: 1102-1111 (in Chinese with English abstract).
[14] 王传堂, 王志伟, 王秀贞, 唐月异, 吴琪, 王东伟, 战庆涛. 6个高油酸夏花生品种(系)机械化收获特性研究. 山东农业科学, 2019, 51(1): 28-31.
Wang C T, Wang Z W, Wang X Z, Tang Y Y, Wu Q, Wang D W, Zhan Q T. Study of mechanical harvest characterizations of 6 high oleic summer peanut varieties (lines). Shandong Agric Sci, 2019, 51(1): 28-31 (in Chinese with English abstract).
[15] 王传堂, 王志伟, 王秀贞, 吴琪, 唐月异, 杜祖波, 李秋, 于树涛, 王东伟. 不同花生基因型机械化收获相关特性的研究. 花生学报, 2019, 48(1): 52-57.
Wang C T, Wang Z W, Wang X Z, Wu Q, Tang Y Y, Du Z B, Li Q, Yu S T, Wang D W. Evaluation of different peanut genotypes for mechanized harvest properties. J Peanut Sci, 2019, 48(1): 52-57 (in Chinese with English abstract).
[16] 王传堂, 张建成, 王秀贞, 唐月异, 吴琪, 王志伟, 杜祖波, 李秋. 高油酸早熟高产兰娜型出口小花生新品种花育665的选育. 山东农业科学, 2019, 51(7): 21-23.
Wang C T, Zhang J C, Wang X Z, Tang Y Y, Wu Q, Wang Z W, Du Z B, Li Q. Breeding of a new runner-type export peanut variety Huayu 665 with high oleic acid, early maturity and high yield. Shandong Agric Sci, 2019, 51(7): 21-23 (in Chinese with English abstract).
[17] 吴琪, 曹广英, 王云云, 祁雪, 王秀贞, 唐月异, 孙全喜, 张青云, 王传堂. 26个花生品种果柄强度研究. 山东农业科学, 2016, 48(4): 47-49.
Wu Q, Cao G Y, Wang Y Y, Qi X, Wang X Z, Tang Y Y, Sun Q X, Zhang Q Y, Wang C T. Analysis on peg strength of 26 peanut varieties. Shandong Agric Sci, 2016, 48(4): 47-49 (in Chinese with English abstract).
[18] 迟晓元, 许静, 潘丽娟, 姜骁, 王明清, 王亮, 付春, 陈娜. 不同花生种质荚果力学特性研究. 花生学报, 2022, 51(4): 18-28.
Chi X Y, Xu J, Pan L J, Jiang X, Wang M Q, Wang L, Fu C, Chen N. Study on pod mechanical properties of different peanut germplasms. J Peanut Sci, 2022, 51(4): 18-28 (in Chinese with English abstract).
[19] Silvio H L, McClendon R W, Tollner E W. Improving peanut maturity prediction using a hybrid artificial neural network and fuzzy inference system. In: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. pp 543-548.
[20] George K J, Murthy T, Sen P, Reddy P S. High peg strength donors in groundnut (Arachis Hypogaea L.). Curr Sci, 1988, 57: 1006.
[21] 隋荣娟, 潘滢月, 孙居彦. 不同成熟度花生果柄节点力学性能研究. 山东农业工程学院学报, 2019, 36(3): 25-28.
Sui R J, Pan Y Y, Sun J Y. Research on mechanical properties of peg nodes with different maturity of peanuts. J Shandong Agric Eng Univ, 2019, 36(3): 25-28 (in Chinese with English abstract).
[22] 葛选良, 钱春荣, 王柏臣, 于洋, 姜宇博. 作物早熟性基因定位与遗传效应的研究进展. 植物遗传资源学报, 2014, 15: 1161-1166.
doi: 10.13430/j.cnki.jpgr.2014.05.036
Ge X L, Qian C R, Wang B C, Yu Y, Jiang Y B. Research progress in gene mapping and genetic effects of crop earliness. J Plant Genet Resour, 2014, 15: 1161-1166 (in Chinese with English abstract).
[23] 王传堂, 祁雪, 刘婷, 王志伟, 唐月异, 孙全喜, 王秀贞, 吴琪, 邵俊飞, 杨同荣. 花生果柄脱落特性的研究. 花生学报, 2017, 46(1): 64-68.
Wang C T, Qi X, Liu T, Wang Z W, Tang Y Y, Sun Q X, Wang X Z, Wu Q, Shao J F, Yang T R. Studies on peg detachment properties of peanut. J Peanut Sci, 2017, 46(1): 64-68 (in Chinese with English abstract).
[24] 关萌. 全喂入花生摘果试验装置与摘果机关键部件研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2016.
Guan M. Research on Full-feeding Peanut Picking Test Device and Key Components of Peanut Picker. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[25] 周德欢. 花生联合收获全喂入摘果特性试验研究. 中国农业科学院硕士学位论文, 北京, 2017.
Zhou D H. Experimental Study on Full-feeding Picking Characteristics of Peanut Combined Harvesting. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[26] 王冰. 四行半喂入花生联合收获摘果机理与筛选特性研究. 中国农业科学院博士学位论文, 北京, 2018.
Wang B. Pod-picking Mechanism and Sereening Characteristie Researchfor Bottom-feeding Four Rows Peanut Combine Harvester. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[27] Thomas R J, Pettit R E, Taber R A, Jones B L. Peanut peg strength: force required for pod detachment in relation to peg Structure1. Peanut Sci, 1983, 10: 97-101.
[28] Tiwari S P, Murthy T G K, Johnson G K, Varmoda D L. Path-coefficient analysis of anatomical characters affecting peg strength in groundnut. Euphytica, 1988, 39: 119-121.
[29] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选. 作物学报, 2025, 51: 395-404.
doi: 10.3724/SP.J.1006.2025.44088
Wang R F, Li W J, Liao Y J, Lu Q, Liu H, Li H F, Li S X, Liang X Q, Hong Y B, Chen X P. Evaluation of pod maturity and identification of early-maturinggermplasm for core peanut germplasm resources. Acta Agron Sin, 2025, 51: 395-404 (in Chinese with English abstract).
[30] 王传堂, 张建成. 花生遗传改良. 上海: 上海科学技术出版社, 2013. pp 311-313.
Wang C T, Zhang J C. Genetic Improvement of Peanut. Shanghai: Shanghai Scientific & Technical Publishers, 2013. pp 311-313 (in Chinese).
[31] 杨亚洲, 刘姗姗, 杨立权. 花生荚果及花生仁力学特性试验研究. 中国农机化学报, 2016, 37(10): 108-111.
Yang Y Z, Liu S S, Yang L Q. Experimental study on mechanical properties of peanut pods and peanut kernels. J Chin Agric Mech, 2016, 37(10): 108-111 (in Chinese with English abstract).
[32] Jolliffe I T, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 2016, 374: 20150202.
[33] Jiang H F, Huang L, Ren X P, Chen Y N, Zhou X J, Xia Y L, Huang J Q, Lei Y, Yan L Y, Wan L Y, et al. Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol, 2014, 56: 159-169.
[34] Banla E M, Dzidzienyo D K, Diangar M M, Melomey L D, Offei S K, Tongoona P, Desmae H. Molecular and phenotypic diversity of groundnut (Arachis hypogaea L.) cultivars in Togo. Physiol Mol Biol Plants, 2020, 26: 1489-1504.
[1] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[2] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[3] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[4] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[5] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[6] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[7] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[8] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[9] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[10] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[11] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[12] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[13] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
[14] 金欣欣, 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾. 花生种皮类黄酮物质的代谢组与转录组分析[J]. 作物学报, 2024, 50(12): 2950-2961.
[15] 赵维, 胡晓娜, 郑艳, 梁娜, 郑宾, 王笑笑, 汪江涛, 刘领, 付国占, 石兆勇, 焦念元. 玉米、花生根际土AMF群落特点及其对磷肥的响应[J]. 作物学报, 2024, 50(11): 2896-2907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!