欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1887-1900.doi: 10.3724/SP.J.1006.2025.43062

• 耕作栽培·生理生化 • 上一篇    下一篇

有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响

霍建喆,于爱忠,王玉珑,王鹏飞,尹波,刘亚龙,张冬玲,姜科强,庞小能,王凤   

  1. 1甘肃农业大学农学院, 甘肃兰州730070; 2干旱生境作物学国家重点实验室, 甘肃兰州730070
  • 收稿日期:2024-12-27 修回日期:2025-04-25 接受日期:2025-04-25 出版日期:2025-07-12 网络出版日期:2025-05-07
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1900200), 国家自然科学基金项目(32160524), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-22-G-12), 甘肃省自然科学基金(22JR5RA867)和甘肃省高校研究生创新之星项目(2025CXZX-761)资助。

Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas

HUO Jian-Zhe,YU Ai-Zhong*,WANG Yu-Long,WANG Peng-Fei,YIN Bo,LIU Ya-Long,ZHANG Dong-Ling,JIANG Ke-Qiang,PANG Xiao-Neng,WANG Feng   

  1. 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2 State Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, Gansu, China
  • Received:2024-12-27 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-07-12 Published online:2025-05-07
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFD1900200), the National Natural Science Foundation of China (32160524), the China Agriculture Research System of MOF and MARA (CARS-22-G-12), the Natural Science Foundation of Gansu Province (22JR5RA867), and Graduate Student Innovation Star Project of Gansu Province (2025CXZX-761).

摘要:

针对西北灌区化学氮肥施用量高、利用率低等问题,探究有机肥替代部分化学氮肥对甜玉米产量、品质及氮素利用的影响,以期为绿洲灌区甜玉米高产优质生产提供理论依据。田间试验于20232024年在武威绿洲农业试验站进行,设置5个不同的有机肥替代梯度处理(传统施肥,CK;有机肥替代10%化肥,M1;有机肥替代20%化肥,M2;有机肥替代30%化肥,M3;有机肥替代40%化肥,M4)对甜玉米产量、品质和氮素积累、分配及利用效率的影响。与CK处理相比,M2处理甜玉米鲜穗和鲜籽粒产量分别提高4.51%6.31%,穗粒数和千粒重提高2.65%7.01%,籽粒蛋白质、淀粉、可溶性糖和维生素C含量分别提高14.18%8.67%8.83%19.75%,同时该处理降低了茎秆中的中、酸性洗涤纤维含量,提高了茎秆粗蛋白、粗脂肪含量及相对饲用价值。与CK相比,M2处理促进了玉米根系生长,提高了开花期和采收期植株地上部氮素积累量,并保证氮素在籽粒中的分配比例。此外,M2处理显著提高了鲜穗、鲜籽粒氮肥偏生产力和氮素吸收效率,较CK处理分别提高4.64%6.41%20.05%。相关性分析表明,甜玉米鲜穗、鲜籽粒产量与根系生物量、植株氮素积累量、氮素利用各指标呈显著正相关,籽粒蛋白质含量、茎秆粗蛋白含量与氮肥偏生产力、氮素吸收效率、氮素收获指数呈显著正相关。随机森林模型进一步显示,鲜穗氮肥偏生产力、千粒重、根系生物量、氮素收获指数、穗粒数是影响甜玉米鲜穗和鲜籽粒产量的关键因素。综上所述,有机肥替代20%化肥能够优化甜玉米根系生长,促进氮素的积累分配及高效利用,实现产量与品质协同提升,可作为绿洲灌区甜玉米高产优质生产的合理有机无机配施制度

关键词: 甜玉米, 有机肥替代化肥, 产量, 品质, 氮素利用

Abstract:

To address the challenges of excessive chemical nitrogen fertilizer application and low nitrogen use efficiency in northwestern irrigated regions, this study investigated the effects of partially substituting chemical nitrogen fertilizer with organic manure on the yield, quality, and nitrogen utilization of sweet maize. The aim was to provide a theoretical basis for achieving high yield and quality production of sweet maize in oasis irrigation areas. A field experiment was conducted at the Wuwei Oasis Agricultural Experimental Station from 2023 to 2024, involving five fertilization treatments: traditional fertilization (CK), and organic manure replacing 10% (M1), 20% (M2), 30% (M3), and 40% (M4) of chemical nitrogen fertilizer. The treatments were evaluated for their effects on sweet maize yield, quality, nitrogen accumulation, distribution, and use efficiencyCompared to CK, the M2 treatment increased fresh ear and fresh grain yields by 4.51% and 6.31%, respectively. It also improved the number of grains per ear and 1000-grain weight by 2.65% and 7.01%. Grain quality was enhanced, with protein, starch, soluble sugar, and vitamin C contents increasing by 14.18%, 8.67%, 8.83%, and 19.75%, respectively. Additionally, M2 reduced acid detergent fiber content in stems while increasing crude protein, crude fat, and relative feed value. Root growth was promoted under M2, leading to increased shoot nitrogen accumulation at both flowering and maturity stages, and ensuring a favorable nitrogen distribution ratio to the grain. Furthermore, M2 significantly improved nitrogen partial productivity and nitrogen uptake efficiency for both fresh ear and fresh grain, with increases of 4.64%, 6.41%, and 20.05%, respectively, compared to CK. Correlation analysis revealed that fresh ear and grain yields were significantly positively correlated with root biomass, plant nitrogen accumulation, and nitrogen use efficiency. Grain protein and stem crude protein contents were also positively correlated with nitrogen partial productivity, nitrogen uptake efficiency, and nitrogen harvest index. random forest model identified fresh ear nitrogen partial productivity, 1000-grain weight, root biomass, nitrogen harvest index, and grain number per ear as key determinants of sweet maize yield. In conclusion, replacing 20% of chemical nitrogen fertilizer with organic manure effectively enhances root growth, promotes nitrogen accumulation, allocation, and efficient utilization, and ultimately achieves coordinated improvement in both yield and quality. This approach represents a viable integrated organic–inorganic fertilization strategy for high-yield, high-quality sweet maize production in oasis irrigation systems.

Key words: sweet maize, organic manure substitution for chemical fertilizer, yield, quality, nitrogen utilization

[1] 黄巧义, 唐拴虎, 张发宝, 张木, 黄旭, 逄玉万, 李苹, 付弘婷. 控释尿素与常规尿素配施比例对甜玉米产量和氮肥利用的影响. 植物营养与肥料学报, 2017, 23: 622–631.

Huang Q Y, Tang S H, Zhang F B, Zhang M, Huang X, Pang Y W, Li P, Fu H T. Effect of the blending ratio of controlled-release urea and conventional urea on yield and nitrogen utilization efficiency of sweet corn. J Plant Nutr Fert, 2017, 23: 622–631 (in Chinese with English abstract).

[2] 李向岭, 胡君霞, 左怿平, 张梦, 王健, 韩金玲, 尹宝重, 段会军. 聚天门冬氨酸缓释复合肥显著提高甜玉米鲜穗产量与品质. 植物营养与肥料学报, 2021, 27: 2019–2029.

Li X L, Hu J X, Zuo Y P, Zhang M, Wang J, Han J L, Yin B Z, Duan H J. Slow-release compound fertilizer containing polyaspartic acid effectively increases fresh ear yield and quality of sweet corn. J Plant Nutr Fert, 2021, 27: 2019–2029 (in Chinese with English abstract).

[3] Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. Managing nitrogen for sustainable development. Nature, 2015, 528: 51–59.

[4] IBRD. International Bank for Reconstruction and Development. Indicator. 2025. Available online: https://data.worldbank.org/indicator/AG.CON.FERT.ZS.

[5] Yang Y R, He Y C, Li Z L. Social capital and the use of organic fertilizer: an empirical analysis of Hubei Province in China. Environ Sci Pollut Res Int, 2020, 27: 15211–15222.

[6] 赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 施氮量对甜玉米产量、品质和蔗糖代谢酶活性的影响. 植物营养与肥料学报, 2013, 19: 45–53.
Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of nitrogen fertilization on yieldquality and enzyme activity associated with sucrose metabolism of sweet corn. J Plant Nutr Fert, 2013, 19: 45–53 (in Chinese with English abstract).

[7] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响. 作物学报, 2020, 46: 924–936.
Luo W H, Shi Z J, Wang X M, Li J, Wang R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agron Sin, 2020, 46: 924–936 (in Chinese with English abstract).

[8] Li H R, Shang Y W, Gao J S, Zhang H Y, Chen H T, Wang X Q, Guo J J, Zhang X, Wang J, Li Y Y. Subsurface manure application enhances soil quality, ecosystem multifunctionality, and crop yield in the North China Plain. Appl Soil Ecol, 2024, 203: 105674.

[9] Ren J H, Liu X L, Yang W P, Yang X X, Li W G, Xia Q, Li J H, Gao Z Q, Yang Z P. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. J Environ Manag, 2021, 299: 113650.

[10] Yang Z C, Zhao N, Huang F, Lyu Y Z. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the north China Plain. Soil Tillage Res, 2015, 146: 47–52.

[11] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51: 2336–2347.
Gai X P, Liu H B, Zhai L M, Yang B, Ren T Z, Wang H Y, Wu S X, Lei Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Sci Agric Sin, 2018, 51: 2336–2347 (in Chinese with English abstract).

[12] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053–1064.
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053–1064 (in Chinese with English abstract).

[13] 周芸, 李永梅, 范茂攀, 王自林, 徐智, 张丹, 赵吉霞. 有机肥等氮替代化肥对红壤团聚体及玉米产量和品质的影响. 作物杂志, 2019, (4): 125–132.
Zhou Y, Li Y M, Fan M P, Wang Z L, Xu Z, Zhang D, Zhao J X. Effects of nitrogen in organic manure replacing chemical nitrogenous fertilizer on aggregates of red soil, maize yield and quality. Crops, 2019, (4): 125–132 (in Chinese with English abstract).

[14] 熊波, 王琛, 张莉, 滕飞, 李震, 李传友, 刘京蕊, 常晓莲, 赵谦, 李贵桐. 有机肥替代化肥对京郊夏播青贮玉米生长与饲料品质的影响. 中国土壤与肥料, 2021, (3): 141–147.
Xiong B, Wang C, Zhang L, Teng F, Li Z, Li C Y, Liu J R, Chang X L, Zhao Q, Li G T. Effects of organic fertilizer substituting chemical fertilizer on the growth and quality of summer silage maize in Beijing suburbs. Soil Fert Sci China, 2021, (3): 141–147 (in Chinese with English abstract). 

[15] 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应. 中国农业科学, 2023, 56: 1708–1717.
Wei Y N, Bo Q F, Tang A, Gao J R, Ma T, Wei X X, Zhang F F, Zhou X L, Yue S C, Li S Q. Effects of long-term film mulching and application of organic fertilizer on yield and quality of spring maize on the Loess Plateau. Sci Agric Sin, 2023, 56: 1708–1717 (in Chinese with English abstract).

[16] Dai F Y, Fan B Q, Li J G, Zhang Y T, Wang H Y, Wang Z, Bashir M A, Ezzati G, Zhai L M, Di H J, et al. Fate of 15N-labelled urea as affected by long-term manure substitution. Sci Total Environ, 2023, 893: 164924.

[17] 赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 施氮量对甜玉米产量、品质和蔗糖代谢酶活性的影响. 植物营养与肥料学报, 2013, 19: 45–53.
Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of nitrogen fertilization on yield, quality and enzyme activity associated with sucrose metabolism of sweet corn. Plant Nutr Fert Sci, 2013, 19: 45–53 (in Chinese with English abstract).

[18] Ertek A, Kara B. Yield and quality of sweet corn under deficit irrigation. Agric Water Manag, 2013, 129: 138–144.

[19] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991, 74: 3583–3597. 

[20] Chen Y L, Palta J, Clements J, Buirchell B, Siddique K H M, Rengel Z. Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Res, 2014, 165: 61–70.

[21] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. 中国农业科学, 2009, 42: 843–853.
Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843–853 (in Chinese with English abstract).

[22] Jiang Y L, Zhang J, Manuel D B, de Beeck M O, Shahbaz M, Chen Y, Deng X P, Xu Z L, Li J, Liu Z F. Rotation cropping and organic fertilizer jointly promote soil health and crop production. J Environ Manag, 2022, 315: 115190. 

[23] 刘蕾, 史建硕, 张国印, 郜静, 李玭, 任燕利, 王丽英. 长期施有机肥对设施番茄土壤稀有和丰富细菌亚群落的影响. 中国农业科学, 2023, 56: 3615–3628.

Liu L, Shi J S, Zhang G Y, Gao J, Li P, Ren Y L, Wang L Y. Effects of long-term application of organic fertilizer on rare and abundant bacterial sub-communities in greenhouse tomato soil. Sci Agric Sin, 2023, 56: 3615–3628 (in Chinese with English abstract). 

[24] 宋海星, 李生秀. 玉米生长空间对根系吸收特性的影响. 中国农业科学, 2003, 36: 899–904.

Song H X, Li S X. Effects of root growing space of on maize its absorbing characteristics. Sci Agric Sin, 2003, 36: 899–904 (in Chinese with English abstract).

[25] Jiang Y L, Zhang J, Manuel D B, Op de Beeck M, Shahbaz M, Chen Y, Deng X P, Xu Z L, Li J, Liu Z F. Rotation cropping and organic fertilizer jointly promote soil health and crop production. J Environ Manag, 2022, 315: 115190. 

[26] Zhai L C, Zhang L H, Cui Y Z, Zhai L F, Zheng M J, Yao Y R, Zhang J T, Hou W B, Wu L Y, Jia X L. Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation. J Integr Agric, 2024, 23: 1179–1194. 

[27] Wang Q, Ren X N, Sun Y, Zhao J C, Awasthi M K, Liu T, Li R H, Zhang Z Q. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion. J Clean Prod, 2021, 278: 123397.

[28] 李小萌, 陈效民, 曲成闯, 张志龙, 张俊, 黄春燕, 刘云梅. 生物有机肥与减量配施化肥对连作黄瓜养分利用率及产量的影响. 水土保持学报, 2020, 34: 309–317.
Li X M, Chen X M, Qu C C, Zhang Z L, Zhang J, Huang C Y, Liu Y M. Effects of bio-organic fertilizer combined with reduced fertilizer on nutrient utilization and yield of continuous cropping cucumber. J Soil Water Conserv, 2020, 34: 309–317 (in Chinese with English abstract).

[29] Zhai L C, Wang Z B, Zhai Y C, Zhang L H, Zheng M J, Yao H P, Lyu L H, Shen H P, Zhang J T, Yao Y R, et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res, 2022, 217: 105287. 

[30] 赵俊晔, 于振文. 高产条件下施氮量对冬小麦氮素吸收分配利用的影响. 作物学报, 2006, 32: 484–490.

Zhao J H, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin, 2006, 32: 484–490 (in Chinese with English abstract).

[31] Liu H W, Du X F, Li Y B, Han X, Li B, Zhang X K, Li Q, Liang W J. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. J Clean Prod, 2022, 347: 131323. 

[32] Salazar O, Balboa L, Peralta K, Rossi M, Casanova M, Tapia Y, Singh R, Quemada M. Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agric Water Manag, 2019, 212: 399–406. 

[33] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51: 2136–2142.

Wen Y C, Zhang Y D, Yuan L, Li W, Li Y Q, Lin Z A, Zhao B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Sci Agric Sin, 2018, 51: 2136–2142 (in Chinese with English abstract).

[34] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49: 3934–3943.
Xie J, Zhao Y N, Chen X J, Li D P, Xu C L, Wang K, Zhang Y Q, Shi X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Sci Agric Sin, 2016, 49: 3934–3943 (in Chinese with English abstract).

[35] 万连杰, 何满, 李俊杰, 田洋, 张绩, 郑永强, 吕强, 谢让金, 马岩岩, 邓烈, . 有机肥替代部分化肥对椪柑生长、品质及土壤特性的影响. 中国农业科学, 2022, 55: 2988–3001.
Wan L J, He M, Li J J, Tian Y, Zhang J, Zheng Y Q, Lyu Q, Xie R J, Ma Y Y, Deng L, et al. Effects of partial substitution of chemical fertilizer by organic fertilizer on ponkan growth and quality as well as soil properties. Sci Agric Sin, 2022, 55: 2988–3001 (in Chinese with English abstract).

[36] 司若彤, 刘维, 林电. 有机肥部分替代化肥对台农芒果产量和品质的影响. 中国土壤与肥料, 2020, (4): 107–114.
Si R T, Liu W, Lin D. Effect of partial replacement of chemical fertilizer by organic fertilizer on yield and quality of Tainong mango. Soil Fert Sci China. 2020, (4): 107–114 (in Chinese with English abstract).

[37] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响. 作物学报, 2025, 51: 149–160.
Wang Y, Xu J Y, Dong E W, Wang J S, Liu Q X, Huang X L, Jiao X Y. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet. Acta Agron Sin, 2025, 51: 149–160 (in Chinese with English abstract).

[38] Zhang L, Liang Z Y, He X M, Meng Q F, Hu Y C, Schmidhalter U, Zhang W, Zou C Q, Chen X P. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Res, 2020, 249: 107754. 

[39] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016, 99: 1–12. 

[40] Han Y, Lv F L, Lin X D, Zhang C Y, Sun B H, Yang X Y, Zhang S L. Crop yield and nutrient efficiency under organic manure substitution fertilizer in a double cropping system: a 6-year field experiment on an anthrosol. Agronomy, 2022, 12: 2047. 

[41] 周江明. 有机-无机肥配施对水稻产量、品质及氮素吸收的影响. 植物营养与肥料学报, 2012, 18: 234–240.
Zhou J M. Effect of combined application of organic and mineral fertilizers on yield, quality and nitrogen uptake of rice. Plant Nutr Fert Sci, 2012, 18: 234–240 (in Chinese with English abstract).

[42] Geng S, Hills F J, Johnson S S, Sah R N. Potential yields and on-farm ethanol production cost of corn, sweet Sorghum, fodder beet, and sugar beet. J Agronomy Crop Sci, 1989, 162: 21–29.

[43] Liu H, Struik P C, Zhang Y J, Jing J Y, Stomph T J. Forage quality in cereal/legume intercropping: a meta-analysis. Field Crops Res, 2023, 304: 109174. 

[44] 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响. 草业学报, 2023, 32(3): 13–29.
Wang M J, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area. Acta Pratac Sin, 2023, 32(3): 13–29 (in Chinese with English abstract). 

[45] 李蒙蒙, 张桂国, 杨在宾, 杨维仁. 堆肥施用量对全株青贮玉米产量和营养价值的影响. 中国农业科学, 2013, 46: 2337–2344.
Li M M, Zhang, G G, Yang Z B, Yang W R. Effect of different amounts of compost fertilizer on yields and nutritive values of whole corn plant silage. Sci Agric Sin, 2013, 46: 2337–2344 (in Chinese with English abstract).

[46] 王久龙, 王振华, 李文昊, 裴磊, 赵波, 扁青永, 朱延凯. 施氮量对复播青贮玉米光合特性和产量的影响. 干旱地区农业研究, 2017, 35(5): 250–255.

Wang J L, Wang Z H, Li W H, Pei L, Zhao B, Bian Q Y, Zhu Y K. Effects of nitrogen application rate on photosynthetic characteristics and yield of silage maize. Agric Res Arid Areas, 2017, 35(5): 250–255 (in Chinese with English abstract).

[47] Nazli R İ, Kuşvuran A, İnal İ, Demİrbaş A, Tansi V. Effects of different organic materials on forage yield and quality of silage maize (Zea mays L.). Turk J Agric For, 2014, 38: 23–31. 

[48] Sadafzadeh E, Javanmard A, Amani Machiani M, Sofo A. Application of bio-fertilizers improves forage quantity and quality of Sorghum (Sorghum bicolor L.) intercropped with soybean (Glycine max L.). Plants, 2023, 12: 2985. 

[49] 吕汉强, 于爱忠, 王玉珑, 苏向向, 吕奕彤, 柴强. 干旱绿洲灌区玉米氮素吸收利用对绿肥还田利用方式的响应. 草业学报, 2020, 29(8): 93–103.

Lyu H Q, Yu A Z, Wang Y L, Su X X, Lyu Y T, Chai Q. Effect of green manure retention practices on nitrogen absorption and utilization by maize crops in the arid oasis irrigation area. Acta Pratac Sin, 2020, 29(8): 93–103 (in Chinese with English abstract).

[50] 郭校伟, 潘军晓, 张济世, 徐张义, 马东立, 崔振岭. 好氧发酵猪粪部分替代化肥提高夏玉米氮素利用率和土壤肥力. 植物营养与肥料学报, 2020, 26: 1025–1034.
Guo X W, Pan J X, Zhang J S, Xu Z Y, Ma D L, Cui Z L. Partial substitution of chemical fertilizer with aerobic fermented pig manure increases nitrogen use efficiency of summer maize and soil fertility. J Plant Nutr Fert, 2020, 26: 1025–1034 (in Chinese with English abstract).

[51] 王鸣腾, 曾冲, 杨东霞, 李帅, 王梓萌, 周明远, 秦丁, 王宜伦, 盛开, 李刚, 等. 不同发酵方式有机肥配施化肥对夏玉米产量、光温及养分吸收积累特性的影响. 农业资源与环境学报, 网络首发[2024-8-19], https://link.cnki.net/urlid/12.1437.S.20240819.1111.001.
Wang M T, Zeng C, Yang D X, Li S, Wang Z M, Zhou M Y, Qing D, Wang Y L, Sheng K, Li G, et al. Effects of various fermentation methods for organic fertilizer combined with chemical fertilizer on the yield, light-temperature, and nutrient absorption and accumulation characteristics of summer maize. J Agric Resour Environ, Published online [2024-8-19], https://link.cnki.net/urlid/12.1437.S.20240819.1111.001 (in Chinese with English abstract).

[52] Xia Y H, Chen X B, Zheng S M, Gunina A, Ning Z, Hu Y J, Tang H M, Rui Y C, Zhang Z H, He H B, et al. Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necromass. Agric Ecosyst Environ, 2021, 319: 107575. 

[53] 申长卫, 袁敬平, 李新华, 张帅垒, 任秀娟, 王菲, 刘星, 张影, 欧行奇, 陈锡岭. 有机肥氮替代20%化肥氮提高豫北冬小麦氮肥利用率和土壤肥力. 植物营养与肥料学报, 2020, 26: 1395–1406.
Shen C W, Yuan J P, Li X H, Zhang S L, Ren X J, Wang F, Liu X, Zhang Y, Ou X Q, Chen X L. Improving winter wheat N utilization efficiency and soil fertility through replacement of chemical N by 20% organic manure. J Plant Nutr Fert, 2020, 26: 1395–1406 (in Chinese with English abstract). 

[54] 任科宇, 段英华, 徐明岗, 张旭博. 施用有机肥对我国作物氮肥利用率影响的整合分析. 中国农业科学, 2019, 52: 2983–2996.

Ren K Y, Duan Y H, Xu M G, Zhang X B. Effect of manure application on nitrogen use efficiency of crops in China: a meta-analysis. Sci Agric Sin, 2019, 52: 2983–2996 (in Chinese with English abstract). 

[55] 裴雪霞, 党建友, 张定一, 张晶, 程麦凤, 王姣爱. 化肥减施下有机替代对小麦产量和养分吸收利用的影响. 植物营养与肥料学报, 2020, 26: 1768–1781.
Pei X X, Dang J Y, Zhang D Y, Zhang J, Cheng M F, Wang J A. Effects of organic substitution on the yield and nutrient absorption and utilization of wheat under chemical fertilizer reduction. J Plant Nutr Fert, 2020, 26: 1768–1781 (in Chinese with English abstract). 

[56] Couëdel A, Alletto L, Tribouillois H, Justes É. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric Ecosyst Environ, 2018, 254: 50–59. 

[57] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016, 49: 503–517.

Wang J G, Lin S, Li B G. Nitrogen cycling and management strategies in Chinese agriculture. Sci Agric Sin, 2016, 49: 503–517 (in Chinese with English abstract). 

[58] Peng C J, Zhang Z C, Li Y, Zhang Y, Dong H B, Fang Y H, Han L P, Xu W G, Hu L. Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan Province. Field Crops Res, 2022, 277: 108406.

[1] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[4] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[5] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[6] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[7] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[8] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[9] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[10] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[11] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[12] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[13] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[14] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[15] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .