欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2077-2086.doi: 10.3724/SP.J.1006.2025.51010

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

矮秆基因Rht-D1在长江中下游麦区的育种利用探索

姜朋1,*,2(), 吴磊1,2, 黄倩楠3, 李畅1, 王化敦1,2, 何漪1,2, 张鹏1,2, 张旭1,*,2,4()   

  1. 1JAAS-CIMMYT小麦病害联合研究中心 / 小麦赤霉病研究中心 / 农业农村部淮河下游种质创新重点实验室 / 江苏省农业科学院, 江苏南京 210014
    2生物育种钟山实验室, 江苏南京 210014
    3伊犁州农业科学研究所, 新疆伊宁 835000
    4现代作物生产省部共建协同创新中心, 江苏南京 210095
  • 收稿日期:2025-01-24 接受日期:2025-04-27 出版日期:2025-08-12 网络出版日期:2025-05-26
  • 通讯作者: *姜朋, E-mail: hmjp2005@163.com;张旭, E-mail: xuzhang@jaas.ac.cn
  • 基金资助:
    国家自然科学基金项目(32372186);生物育种钟山实验室项目(ZSBBL-KY2023-02);江苏省国际科技合作项目(BZ2024043);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03-57)

Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River

JIANG Peng1,2,*(), WU Lei1,2, HUANG Qian-Nan3, LI Chang1, WANG Hua-Dun1,2, HE Yi1,2, ZHANG Peng1,2, ZHANG Xu1,2,4,*()   

  1. 1CIMMYT-JAAS Joint Center for Wheat Diseases / the Research Center of Wheat Scab / Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing) / Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China
    3Yili Institute of Agricultural Science, Yining 835000, Xinjiang, China
    4Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing 210095, Jiangsu, China
  • Received:2025-01-24 Accepted:2025-04-27 Published:2025-08-12 Published online:2025-05-26
  • Supported by:
    National Natural Science Foundation of China(32372186);Zhongshan Biological Breeding Laboratory(ZSBBL-KY2023-02);International Scientific and Technological Cooperation Projects of Jiangsu Province(BZ2024043);China Agriculture Research System of MOF and MARA(CARS-03-57)

摘要:

Rht-B1Rht-D1基因是世界范围内应用最广泛的矮秆基因。在长期的育种选择中, 我国长江中下游麦区对矮秆基因的选择表现出明显倾向性, 以Rht-B1b变异类型为主。为丰富品种矮秆基因类型, 拓宽遗传基础, 本研究尝试将黄淮麦区的主要矮秆基因变异类型Rht-D1b引入长江中下游麦区小麦品种, 以2个麦区的小麦品种为亲本进行杂交, 在后代中筛选携带不同矮秆基因的品系, 并进行系统的田间表型评价, 为后续育种利用提供理论及材料支持。结果表明, 携带Rht-D1b的品系较携带Rht-B1b的品系在单位面积穗数、株高、穗长、叶片长宽、茎叶夹角等性状上无显著差异, 而其小穗数则显著增加, 是一个可利用的优势性状。但是, 携带Rht-D1b品系的赤霉病病小穗率显著高于携带Rht-B1b的品系, 通过抗赤霉病基因的应用, 携带不同矮秆基因材料的赤霉病抗性均显著提高。本研究明确了将Rht-D1b变异类型应用于长江中下游麦区小麦育种能够增加小穗数, 提升产量潜力, 抗病基因的应用均能够显著提高赤霉病抗性, 同时这些材料也可作为优良抗性亲本应用于黄淮麦区育种工作。

关键词: 小麦, 长江中下游麦区, 矮秆基因, 冬春杂交, 赤霉病

Abstract:

Rht-B1 and Rht-D1 are the most widely utilized dwarfing genes in wheat breeding worldwide. In the long-term breeding practices of the middle and lower reaches of the Yangtze River in China, there has been a clear preference for dwarfing genes, with Rht-B1b being the predominant allele. To diversify dwarfing gene types and broaden the genetic base of local wheat varieties, this study aimed to introduce the major dwarfing allele Rht-D1b—commonly used in the Huang-huai wheat region—into the middle and lower reaches of the Yangtze River. Parental lines from both regions were used for hybridization, and progeny carrying different dwarfing genes were selected. Field-based phenotypic evaluations were then conducted to provide theoretical and germplasm support for future breeding efforts. The results showed no significant differences between Rht-D1b and Rht-B1b lines in traits such as spike number per unit area, plant height, spike length, flag leaf length and width, or angles between leaf and stem. However, the lines carrying Rht-D1b exhibited a significantly higher number of spikelets, a favorable trait with potential to enhance yield. On the other hand, Rht-D1b lines showed a markedly higher incidence of Fusarium head blight (FHB) infection compared to Rht-B1b lines. Importantly, the incorporation of FHB resistance genes substantially improved FHB resistance in lines with both dwarfing gene types. This study demonstrates that the introduction of Rht-D1b into wheat breeding programs in the middle and lower reaches of the Yangtze River can effectively increase spikelet number and yield potential. Furthermore, the integration of FHB resistance genes can mitigate associated disease susceptibility. These newly developed lines also have potential as resistant parental materials for use in the Huang-Huai wheat breeding programs.

Key words: wheat, the middle and lower reaches of the Yangtze River, dwarfing genes, winter-spring hybridization, Fusarium head blight

图1

矮秆基因Rht-B1和Rht-D1的分子标记鉴定(A)和分布频率(B)"

附表1

试验材料的系谱及主效矮秆基因信息"

序号
No.
组合
Combinations
携带Rht-B1b的数量
Number of the lines
carrying Rht-B1b
携带Rht-D1b的数量
Number of the lines
carrying Rht-D1b
1 瑞华麦521/扬麦23 Ruihuamai 521/Yangmai 23 8 2
2 益科麦5号/扬14-122 Yikemai 5/Yang 14-122 5 5
3 瑞华麦521/扬麦16 Ruihuamai 521/Yangmai 16 4 2
4 瑞华麦521/扬14-163 Ruihuamai 521/Yang 14-163 3 11
5 明麦16/扬辐麦4号 Mingmai 16/Yangfumai 4 4 4
6 明麦16/扬麦158 Mingmai 16/Yangmai 158 1 2
7 周麦16/扬辐麦4号 Zhoumai 16/Yangfumai 4 5 3
8 周麦16/NY64 Zhoumai 16/NY64 2 2
9 周麦16/扬14-163 Zhoumai 16/Yang 14-163 6 6
10 周麦30/扬14-163 Zhoumai 30/Yang 14-163 5 4
11 BHY12/宁麦26 BHY12/Ningmai 26 7 4
12 BHY12/扬14-163 BHY12/Yang 14-163 11 8
13 益科麦5号/扬13-68 Yikemai 5/Yang 13-68 5 1
14 农麦152/宁麦13 Nongmai 152/Ningmai 13 11 3
15 周麦35/扬辐麦4号 Zhoumai 35/Yangfumai 4 4 1
16 周麦35/镇麦168 Zhoumai 35/Zhenmai 168 1 2
17 周麦35/NY51 Zhoumai 35/NY51 8 5

表1

农艺性状的相关分析"

性状
Trait
单位面积穗数
Spike number per unit area
株高
Plant height
穗下节间长度
Length of
internode
below the spike
小穗数
Number of spikelets
穗长
Spike length
旗叶长度
Flag leaf length
旗叶宽度
Flag leaf width
茎叶夹角
Angles
between leaf and stem
单位面积穗数
Spike number per unit area
0.16* 0.09 0.20* -0.39** -0.06 0.07 0.14 0.13
株高
Plant height
-0.01 0.59** 0.51** -0.04 -0.02 0.09 -0.12 0.34**
穗下节间长度
Length of internode below the spike
-0.15 0.41** 0.67** -0.33** 0.04 0.38** 0.06 0.38**
小穗数
Number of spikelets
-0.18* 0.24** -0.12 0.62** 0.42** 0.10 -0.06 0.04
穗长
Spike length
-0.24** -0.04 0.13 0.21** 0.51** 0.10 0.05 0.26**
旗叶长度
Flag leaf length
-0.18* -0.21** 0.34** -0.34** 0.10 0.46** 0.31** 0.26**
旗叶宽度
Flag leaf width
-0.05 -0.27** 0.11 -0.21** 0.01 0.53** 0.61** 0.09
茎叶夹角
Angles between leaf and stem
-0.18* 0.14 0.36** 0.11 0.23** 0.36** 0.20* 0.26**

表2

农艺性状的方差分析(F值)"

项目
Item
单位面积穗数
Spike number per unit area
株高
Plant height
穗下节间长度
Length of
internode
below the spike
小穗数
Number of spikelets
穗长
Spike length
旗叶长度
Flag leaf length
旗叶宽度
Flag leaf width
茎叶夹角
Angles between leaf and stem
杂交组合
Combinations
5.87** 8.62** 11.77** 19.21** 6.89** 15.09** 14.29** 9.52**
矮秆基因
Dwarfing genes
8.54** 0.24 0 55.51** 1.77 2.53 0.01 0.17
生长季
Growing season
25.66** 1.00 15.00** 34.98** 176.75** 30.66** 95.32** 107.21**
杂交组合×生长季
Combinations × growing season
2.91** 3.04** 1.29 3.11** 1.11 5.31** 2.03* 8.04**
矮秆基因×生长季
Dwarfing genes ×
growing season
0.80 0.05 1.05 10.77** 0.81 6.81** 5.93* 2.40
杂交组合×矮秆基因
Combinations × dwarfing genes
2.35** 11.91** 6.56** 10.00** 4.29** 8.09** 6.30** 8.26**

图2

不同矮秆基因品系间的农艺性状差异比较 *和**分别表示0.05和0.01显著水平。"

附表2

携带不同矮秆基因品系的农艺性状"

性状
Trait
生长季
Growing season
矮秆基因Dwarfing genes 范围
Range
平均值
Mean
标准差
SD
变异系数Coefficient of variation (%)
单位面积穗数
Spike number per unit area (×106 hm-2)
2023 Rht-B1b 3.70-9.98 6.09 0.92 15.05
Rht-D1b 3.98-7.40 5.90 0.77 13.05
2024 Rht-B1b 3.28-9.82 5.67 1.03 18.20
Rht-D1b 3.45-7.80 5.29 0.96 18.21
株高
Plant height (cm)
2023 Rht-B1b 56.00-100.50 83.54 6.71 8.03
Rht-D1b 72.00-101.50 83.18 6.38 7.67
2024 Rht-B1b 55.50-98.50 83.83 5.82 6.94
Rht-D1b 72.50-98.00 83.26 5.64 6.78
穗下节间长度
Length of internode below the spike (cm)
2023 Rht-B1b 17.67-35.92 27.50 2.83 10.28
Rht-D1b 21.42-38.67 27.66 3.71 13.40
2024 Rht-B1b 21.83-32.63 28.69 2.12 7.37
Rht-D1b 20.63-37.04 28.46 3.59 12.63
小穗数
Number of spikelets
2023 Rht-B1b 16.17-23.58 18.95 1.98 10.43
Rht-D1b 16.67-25.00 20.91 1.99 9.50
2024 Rht-B1b 15.33-23.83 18.49 1.98 10.73
Rht-D1b 17.08-23.92 19.80 1.52 7.67
穗长
Spike length (cm)
2023 Rht-B1b 7.50-11.84 9.48 0.84 8.82
Rht-D1b 7.17-11.63 9.55 0.80 8.41
2024 Rht-B1b 7.08-10.03 8.49 0.60 7.06
Rht-D1b 7.30-10.12 8.66 0.59 6.84
旗叶长度
Flag leaf length (cm)
2023 Rht-B1b 14.00-29.33 22.02 2.58 11.72
Rht-D1b 13.25-29.88 21.73 3.77 17.34
2024 Rht-B1b 14.61-24.96 20.22 2.06 10.21
Rht-D1b 15.55-27.18 21.10 2.78 13.18
旗叶宽度
Flag leaf width (cm)
2023 Rht-B1b 1.73-2.57 2.26 0.17 7.68
Rht-D1b 1.84-2.67 2.22 0.18 7.97
2024 Rht-B1b 1.65-2.55 2.10 0.14 6.68
Rht-D1b 1.79-2.53 2.12 0.16 7.34
茎叶夹角
Angles between leaf and stem (°)
2023 Rht-B1b 17.50-49.58 32.94 6.47 19.65
Rht-D1b 20.00-53.33 33.26 7.84 23.58
2024 Rht-B1b 21.58-90.00 41.88 17.42 41.59
Rht-D1b 20.42-90.00 39.97 17.27 43.20

图3

不同矮秆基因品系间的赤霉病病小穗率比较 **表示0.01显著水平。"

图4

携带不同抗赤霉病基因品系间的赤霉病病小穗率比较 *和**分别表示0.05和0.01显著水平。"

附表3

部分优异品系的农艺性状与赤霉病抗性表现"

材料
编号
No.
组合
Combinations
矮秆基因Dwarfing genes 单位面积穗数
Spike number per unit area
(×106 hm-2)
株高
Plant height
(cm)
穗下节间长度
Length of
internode below
the spike (cm)
小穗数
Number of spikelets
穗长Spike length (cm) 旗叶长度Flag leaf length
(cm)
Line 1 益科麦5号/扬14-122
Yikemai 5/Yang 14-122
Rht-B1b 6.52 81.75 28.35 18.42 8.21 18.40
Line 2 明麦16/扬辐麦4号
Mingmai 16/Yangfumai 4
Rht-B1b 6.55 82.50 28.63 17.46 8.50 20.17
Line 3 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 5.58 84.75 30.08 21.63 9.56 21.59
Line 4 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 6.57 87.75 32.19 21.92 9.53 23.07
Line 5 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 7.88 80.00 26.04 17.42 8.13 20.17
Line 6 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 6.14 78.50 26.56 17.67 8.47 21.44
Line 7 BHY12/扬14-163
BHY12/Yang 14-163
Rht-B1b 5.18 86.50 27.69 19.71 9.15 19.91
Line 8 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 6.62 81.75 27.25 16.75 8.06 20.24
Line 9 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 6.05 82.25 28.00 18.46 8.98 21.13
Line 10 周麦35/NY51
Zhoumai 35/NY51
Rht-B1b 6.76 84.25 28.90 17.08 8.69 22.54
材料
编号No.
组合
Combination
矮秆基因Dwarfing genes 旗叶宽度
Flag leaf width (cm)
茎叶夹角Angles between leaf and stem (°) Fhb1 QFhb-5A 赤霉病病小穗率Percentage of scabbed spikelets (%)
Line 1 益科麦5号/扬14-122
Yikemai 5/Yang 14-122
Rht-B1b 2.21 36.83 + + 5.00
Line 2 明麦16/扬辐麦4号
Mingmai 16/Yangfumai 4
Rht-B1b 2.25 37.13 + + 22.00
Line 3 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 2.09 27.63 + + 14.00
Line 4 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 2.16 54.83 + + 15.00
Line 5 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 2.28 28.46 + + 23.50
Line 6 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 2.28 40.54 + + 17.50
Line 7 BHY12/扬14-163
BHY12/Yang 14-163
Rht-B1b 2.22 34.42 + + 6.50
Line 8 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 2.32 36.46 + + 22.50
Line 9 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 2.31 58.33 + + 13.00
Line 10 周麦35/NY51
Zhoumai 35/NY51
Rht-B1b 2.14 26.58 + + 19.00
[1] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T M, Zhang J, Parry M A J. Prospects of doubling global wheat yields. Food Energy Secur, 2013, 2: 34-48.
[2] 钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述. 分子植物育种, 2018, 16: 6670-6677.
Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of wheat Rht dwarfing genes. Mol Plant Breed, 2018, 16: 6670-6677 (in Chinese with English abstract).
[3] 刘和平, 程敦公, 吴娥, 曹新有. 黄淮麦区小麦倒伏的原因及对策浅析. 山东农业科学, 2012, 44(2): 55-56.
Liu H P, Cheng D G, Wu E, Cao X Y. Analysis of the causes and countermeasures of wheat lodging in the Huang-huai wheat region. Shandong Agric Sci, 2012, 44(2): 55-56 (in Chinese).
[4] Zhang Y X, Liu H, Yan G J. Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat. Mol Breed, 2021, 41: 4.
[5] 程顺和. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 24-26.
Cheng S H. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Press, 2012. pp 24-26 (in Chinese).
[6] 刘晓宇, 禹海龙, 裴星旭, 梁秋芳, 岳超, 程西永, 许海霞, 詹克慧. 黄淮南部地区小麦品种矮秆基因的组成及其对茎秆特性的影响. 麦类作物学报, 2024, 44: 985-995.
Liu X Y, Yu H L, Pei X X, Liang Q F, Yue C, Cheng X Y, Xu H X, Zhan K H. Composition of dwarfing genes and their effects on stem characteristics of wheat varieties in the southern area of Huang-huai wheat region. J Triticeae Crops, 2024, 44: 985-995 (in Chinese with English abstract).
[7] 徐晴, 许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42: 790-798.
Xu Q, Xu F C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on fusarium head blight resistance. J Triticeae Crops, 2022, 42: 790-798 (in Chinese with English abstract).
[8] 张凯, 兰素缺, 金京京, 张颖君, 彭晓慧, 李杏普, 张业伦. 秋播冬麦区矮秆基因RhtB1bRhtD1bRht8的分布频率及其与产量性状的关系. 麦类作物学报, 2023, 43: 399-408.
Zhang K, Lan S Q, Jin J J, Zhang Y J, Peng X H, Li X P, Zhang Y L. Distribution frequency of dwarf genes RhtB1b, RhtD1b, and Rht8 in autumn-sown winter wheat area and their relationship with yield traits. J Triticeae Crops, 2023, 43: 399-408 (in Chinese with English abstract).
[9] 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析. 中国农业科学, 2022, 55: 233-247.
doi: 10.3864/j.issn.0578-1752.2022.02.001
Jiang P, Zhang P, Yao J B, Wu L, He Y, Li C, Ma H X, Zhang X. Trait characteristics and analysis of related gene loci of Ningmai series wheat varieties. Sci Agric Sin, 2022, 55: 233-247 (in Chinese with English abstract).
[10] Jiang P, Fan X Y, Zhang G X, Wu L, He Y, Li C, Zhang X. Cost-effective duplex competitive allele specific PCR markers for homologous genes facilitating wheat breeding. BMC Plant Biol, 2023, 23: 119.
doi: 10.1186/s12870-023-04116-y pmid: 36855097
[11] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088-2091.
[12] Su Z D, Jin S J, Zhang D D, Bai G H. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2018, 131: 2371-2380.
[13] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020, 69: 249-258.
doi: 10.1111/ppa.13130
[14] 杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析. 作物学报, 2020, 46: 1870-1883.
doi: 10.3724/SP.J.1006.2020.01009
Yang Z Z, Wang Z H, Hu Z R, Xin M M, Yao Y Y, Peng H R, You M S, Su Z Q, Guo W L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agron Sin, 2020, 46: 1870-1883 (in Chinese with English abstract).
[15] 唐建卫, 殷贵鸿, 韩玉林, 黄峰, 王丽娜, 于海飞, 杨光宇, 李新平. 周麦16号主要农艺性状配合力及遗传效应分析. 河南农业科学, 2010, 39(11): 14-18.
doi: 10.3969/j.issn.1004-3268.2010.11.003
Tang J W, Yin G H, Han Y L, Huang F, Wang L N, Yu H F, Yang G Y, Li X P. Analysis of combining ability and genetic effects of main agronomic traits of Zhoumai 16. J Henan Agric Sci, 2010, 39(11): 14-18 (in Chinese).
[16] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47: 869-881.
doi: 10.3724/SP.J.1006.2021.01051
Jiang P, Zhang X, Wu L, He Y, Zhang P P, Ma H X, Kong L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agron Sin, 2021, 47: 869-881 (in Chinese with English abstract).
[17] 许豪, 王益林, 于士男, 郝晓鹏, 高铭爽, 郑继周, 唐建卫, 李巧云, 高艳, 董纯豪, 等. 河南省抗赤霉病小麦新品种基因型、丰产性、农艺与品质性状测定. 河南农业大学学报, 2023, 57(2): 186-196.
Xu H, Wang Y L, Yu S N, Hao X P, Gao M S, Zheng J Z, Tang J W, Li Q Y, Gao Y, Dong C H, et al. Determination of genotype, high yield, agronomic and quality traits of new wheat varieties resistant to fusarium head blight in Henan province. J Henan Agric Univ, 2023, 57(2): 186-196 (in Chinese with English abstract).
[18] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44: 505-511.
doi: 10.3724/SP.J.1006.2018.00505
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, et al. Improvement of resistance of wheat cultivars to fusarium head blight in the Yellow-huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511 (in Chinese with English abstract).
[19] 孙苏阳, 王永军, 李海军, 李丽丽, 刘友华, 纪凤高. 小麦冬春轮回选择育种方法研究进展. 中国农学通报, 2013, 29(36): 15-20.
Sun S Y, Wang Y J, Li H J, Li L L, Liu Y H, Ji F G. Research progress of winter-spring recurrent selection wheat breeding method. Chin Agric Sci Bull, 2013, 29(36): 15-20 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2013-3000
[20] Giancaspro A, Giove S L, Zito D, Blanco A, Gadaleta A. Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci, 2016, 7: 1381.
pmid: 27746787
[21] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019, 51: 1106-1112.
[22] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet, 2019, 51: 1099-1105.
[23] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[3] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[4] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[5] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[6] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[7] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
[8] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[9] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[10] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[11] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[12] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[13] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[14] 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547.
[15] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!