欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2318-2329.doi: 10.3724/SP.J.1006.2025.53011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析

高源**(), 王宇琦**(), 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳*()   

  1. 黑龙江八一农垦大学, 黑龙江大庆 163319
  • 收稿日期:2025-02-19 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-10
  • 通讯作者: *贺琳, E-mail: linlinhe65@sina.com
  • 作者简介:高源, E-mail: 644909333@qq.com;王宇琦, E-mail: 3496668542@qq.com
    **同等贡献
  • 基金资助:
    本研究由国家自然科学基金项目(31701328);黑龙江省博士后科研启动金项目(LBH-Q21160)

Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize

GAO Yuan**(), WANG Yu-Qi**(), JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin*()   

  1. Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2025-02-19 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-10
  • Contact: *E-mail: linlinhe65@sina.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31701328);Postdoctoral Research Foundation of Heilongjiang Province(LBH-Q21160)

摘要:

低温是限制东北地区玉米产量的主要逆境之一。膜NAC转录因子在植物抵御逆境过程中发挥着重要作用, 探究其功能将为玉米耐低温育种提供一定的理论依据。本研究通过生物信息技术分析了9条玉米NTL基因的分子特性, 利用已发表的玉米低温RNA-seq数据, 发现6个成员在根和叶中同时受到低温诱导显著上调表达。选取蛋白同源性达到80.04%的ZmNTL1ZmNTL5基因, 采用基因敲除技术构建了该2条基因的双敲材料zmntl1zmntl5。在低温胁迫条件下, zmntl1zmntl5株系的叶片离子渗透率显著高于B104株系; 而其地上部干重和鲜重、地下部干重和鲜重以及叶绿素含量均显著低于B104株系; zmntl1zmntl5株系的O2-和H2O2含量显著高于B104对照株系, 而GST、SOD、POD和CAT活性均显著低于B104株系。此外, 低温胁迫下ZmGST24ZmNCED3ZmDREB1.6ZmDREB2A基因在zmntl1zmntl5株系中的表达量较B104株系显著降低。综上所述, ZmNTL1ZmNTL5的缺失降低了植物对低温的耐受性, 表明二者是玉米低温耐受性的正调控因子。本研究为耐冷玉米品种改良和新品种培育提供了重要的理论基础和宝贵的遗传资源。

关键词: 玉米, 低温, RNA-seq, NTL, 基因编辑

Abstract:

Low temperature is one of the major abiotic stresses limiting maize yield in Northeast China. Membrane-bound NAC transcription factors play important roles in plant stress responses. Investigating their function provides a theoretical basis for breeding maize with enhanced cold tolerance. In this study, the molecular characteristics of nine maize NTL genes were analyzed using bioinformatics approaches. Analysis of publicly available RNA-seq data revealed that six of these genes were significantly upregulated by low temperature stress in both roots and leaves. Among them, ZmNTL1 and ZmNTL5, which share 80.04% sequence homology, were selected for further study. A double knockout mutant (zmntl1zmntl5) was generated using gene-editing techniques. Under low temperature stress, the ion leakage rate in the leaves of zmntl1zmntl5 was significantly higher than in the wild-type B104. The fresh and dry weights of both aboveground and belowground tissues, as well as chlorophyll content, were significantly lower in zmntl1zmntl5 compared to B104. In contrast, zmntl1zmntl5 exhibited significantly higher levels of O2- and H2O2, while the activities of antioxidant enzymes GST, SOD, POD, and CAT were significantly reduced. Furthermore, the expression levels of ZmGST24, ZmNCED3, ZmDREB1.6, and ZmDREB2A were markedly decreased in zmntl1zmntl5 compared to B104 under cold stress. In summary, the absence of ZmNTL1 and ZmNTL5 compromises cold tolerance in maize, suggesting that both genes function as positive regulators in the cold stress response. This study provides a valuable theoretical foundation and genetic resources for the improvement of cold-tolerant maize varieties and the development of new cultivars.

Key words: maize, low temperature, RNA-seq, NTL, gene editing

表1

本研究所用引物"

引物名称
Primer name
序列
Sequence (5′-3′)
作用
Function
pCPB-Cas9-F GACGGCCAGTGCCAAGCTTGCTGTTTTTGTTAGCCCCATCG 载体构建 Vector construction
pCPB-Cas9-R CTAGCTCTAAAACAATCCTGGTGGCAGGTGCATAATTCGGTGCTTGC 载体构建 Vector construction
ZmNTL1-F CTTCTGCATTTCTAGGCATGATTG 测序 Sequencing
ZmNTL1-R CCGTCTATCTGCCTATGATTCTCAA 测序 Sequencing
ZmNTL5-F CTCGGGTGCTGTGTTTCTGTTTG 测序 Sequencing
ZmNTL5-R GAGGATACAGATTGACAGGCATCACTT 测序 Sequencing
ZmUbi-F TGGTTGTGGCTTCGTTGGTT 实时荧光定量PCR qRT-PCR
ZmUbi-R GCTGCAGAAGAGTTTTGGGTACA 实时荧光定量PCR qRT-PCR
ZmGST24-F CCGGAGTGCACCTGATAGC 实时荧光定量PCR qRT-PCR
ZmGST24-R TGACCCACGACTTGTACCTC 实时荧光定量PCR qRT-PCR
ZmNCED3-F CCGAGGAAAGCGGACGG 实时荧光定量PCR qRT-PCR
ZmNCED3-R CGTAGACCCCGTCGATGAAG 实时荧光定量PCR qRT-PCR
ZmDREB1.6-F TTGAGGTGGATGTGTTCGGC 实时荧光定量PCR qRT-PCR
ZmDREB1.6-R CCACAGCTCCATCTCACCAG 实时荧光定量PCR qRT-PCR
ZmDREB2A-F ATCACTCGGACATCGCATCC 实时荧光定量PCR qRT-PCR
ZmDREB2A-R AGATACCAGGGCTGTCCCAT 实时荧光定量PCR qRT-PCR

表2

ZmNTLs基因理化性质信息统计"

基因名称
Gene name
基因ID
Gene ID
染色体位置
Chromosomal
location
蛋白质长度
Protein length (aa)
分子量
Molecular weight
(kD)
理论等电点
Theoretical isoelectric point
ZmNTL1 GRMZM2G064541 3 517 57.50 5.49
ZmNTL2 GRMZM2G125777 4 665 71.82 4.53
ZmNTL3 GRMZM2G113950 4 657 71.98 4.62
ZmNTL4 GRMZM2G004531 7 709 77.98 4.67
ZmNTL5 GRMZM2G167492 8 518 57.33 5.52
ZmNTL6 GRMZM2G163914 9 612 66.81 5.58
ZmNTL7 GRMZM2G003715 10 664 73.61 4.81
ZmNTL8 GRMZM2G158204 8 313 34.83 9.62
ZmNTL9 AC196475.3_FG005 4 633 70.66 4.90
基因名称
Gene name
不稳定指数
Instability index
脂肪酸指数
Fatty acid index
平均亲疏水性
Grand average of hydropathicity
低温叶log2FC
log2FC of leaves under low temperature
低温根log2FC
log2FC of roots under low temperature
ZmNTL1 49.37 70.60 -0.641 5.19 4.83
ZmNTL2 36.98 74.56 -0.365 -1.00 0.79
ZmNTL3 43.32 67.32 -0.530 2.19 1.47
ZmNTL4 46.98 68.27 -0.508 2.25 2.06
ZmNTL5 49.92 68.40 -0.607 3.32 2.56
ZmNTL6 49.88 79.07 -0.408 -1.21 0.62
ZmNTL7 47.62 67.12 -0.602 4.05 3.50
ZmNTL8 27.62 99.36 0.257 - -
ZmNTL9 56.17 65.94 -0.772 2.93 3.35

图1

ZmNTLs基因的分子特性和低温下表达模式分析 A: ZmNTLs的基因结构。B: ZmNTLs的保守基序。C: ZmNTLs蛋白跨膜域预测。D: ZmNTLs在低温胁迫下的表达模式。E: NTLs的进化关系分析。绿圈代表7个拟南芥NTLs, 蓝圈代表5个水稻NTLs, 黄圈代表9个玉米NTLs, 红圈代表1个小麦NTL。"

图2

zmntl1zmntl5突变体材料的创制 A: ZmNTL1与ZmNTL5蛋白序列比对。B: pCPB-Cas9重组载体示意图。C: ZmNTL1与ZmNTL5的共有靶点设计。D, E: 基因敲除材料中突变等位基因序列的比对。"

图3

ZmNTL1和ZmNTL5的敲除对玉米低温耐受性的影响 A: 低温胁迫下zmntl1zmntl5突变体的表型。B~E: 低温胁迫下zmntl1zmntl5突变体的地上部鲜重/干重、地下部鲜重/干重变化。F, G: 低温胁迫下zmntl1zmntl5突变体的离子渗透率和叶绿素含量变化。标尺为10 cm。**, P < 0.01; ***, P < 0.001。"

图4

ZmNTL1和ZmNTL5的敲除对低温下玉米抗氧化防御系统的影响 A~D: 低温胁迫下zmntl1zmntl5突变体的GST、CAT、POD和SOD酶活变化。E, F: zmntl1zmntl5突变体的DAB和NBT染色。G, H: 低温胁迫下zmntl1zmntl5突变体的O2-和H2O2含量变化。*, P < 0.05; **, P < 0.01。"

图5

ZmNTL1和ZmNTL5敲除对低温胁迫下逆境相关基因表达的影响 A~D: 低温胁迫下zmntl1zmntl5突变体中ZmGST24、ZmNCED3、ZmDREB1.6和ZmDREB2A的相对表达水平变化。**, P < 0.01; ***, P < 0.001。"

[1] Shikha K, Madhumal Thayil V, Shahi J P, Zaidi P H, Seetharam K, Nair S K, Singh R, Tosh G, Singamsetti A, Singh S, et al. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep, 2023, 13: 6297.
doi: 10.1038/s41598-023-33250-8 pmid: 37072497
[2] Ding Y L, Yang S H. Surviving and thriving: how plants perceive and respond to temperature stress. Dev Cell, 2022, 57: 947-958.
doi: 10.1016/j.devcel.2022.03.010 pmid: 35417676
[3] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496-1517.
[4] Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures. Mol Plant, 2020, 13: 544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158
[5] Li Z Y, Fu D Y, Wang X, Zeng R, Zhang X, Tian J G, Zhang S S, Yang X H, Tian F, Lai J S, et al. The transcription factor bZIP68 negatively regulates cold tolerance in maize. Plant Cell, 2022, 34: 2833-2851.
[6] Jiang H F, Shi Y T, Liu J Y, Li Z, Fu D Y, Wu S F, Li M Z, Yang Z J, Shi Y L, Lai J S, et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat Plants, 2022, 8: 1176-1190.
doi: 10.1038/s41477-022-01254-3 pmid: 36241735
[7] Seo P J. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. J Integr Plant Biol, 2014, 56: 334-342.
doi: 10.1111/jipb.12139
[8] Yang Z T, Wang M J, Sun L, Lu S J, Bi D L, Sun L, Song Z T, Zhang S S, Zhou S F, Liu J X. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet, 2014, 10: e1004243.
[9] De Backer J, Van Breusegem F, De Clercq I. Proteolytic activation of plant membrane-bound transcription factors. Front Plant Sci, 2022, 13: 927746.
[10] Li S, Wang N, Ji D D, Xue Z Y, Yu Y C, Jiang Y P, Liu J L, Liu Z H, Xiang F N. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiol, 2016, 172: 1804-1820.
[11] Kim S G, Lee A K, Yoon H K, Park C M. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J, 2008, 55: 77-88.
[12] Sakuraba Y, Kim Y S, Han S H, Lee B D, Paek N C. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell, 2015, 27: 1771-1787.
[13] Sun H M, Xie Y Z, Yang W B, Lyu Q, Chen L P, Li J T, Meng Y, Li L Q, Li X J. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 182: 182-193.
[14] Wu Z, Li T, Xiang J, Teng R D, Zhang D H, Teng N J. A lily membrane-associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2-HSFA3 module. J Exp Bot, 2023, 74: 945-963.
[15] Wang D X, Yu Y C, Liu Z H, Li S, Wang Z L, Xiang F N. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response. Plant Sci, 2016, 250: 30-39.
doi: S0168-9452(16)30098-X pmid: 27457981
[16] Qian Y X, Xi Y, Xia L X, Qiu Z L, Liu L, Ma H. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. Int J Mol Sci, 2023, 24: 16157.
[17] Xi Y, Ling Q Q, Zhou Y, Liu X, Qian Y X. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2022, 13: 986628.
[18] Gu Y N, He L, Zhao C J, Wang F, Yan B W, Gao Y Q, Li Z T, Yang K J, Xu J Y. Biochemical and transcriptional regulation of membrane lipid metabolism in maize leaves under low temperature. Front Plant Sci, 2017, 8: 2053.
doi: 10.3389/fpls.2017.02053 pmid: 29250095
[19] Zhao X C, Wei Y L, Zhang J J, Yang L, Liu X Y, Zhang H Y, Shao W J, He L, Li Z T, Zhang Y F, et al. Membrane lipids' metabolism and transcriptional regulation in maize roots under cold stress. Front Plant Sci, 2021, 12: 639132.
[20] Liu X H, Lyu Y S, Yang W P, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J, 2020, 18: 1317-1329.
[21] Zhao Y S, Antoniou-Kourounioti R L, Calder G, Dean C, Howard M. Temperature-dependent growth contributes to long-term cold sensing. Nature, 2020, 583: 825-829.
[22] Seo P J, Kim M J, Park J Y, Kim S Y, Jeon J, Lee Y H, Kim J, Park C M. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J, 2010, 61: 661-671.
[23] Yang Z T, Fan S X, Wang J J, An Y, Guo Z Q, Li K, Liu J X. The plasma membrane-associated transcription factor NAC091 regulates unfolded protein response in Arabidopsis thaliana. Plant Sci, 2023, 334: 111777.
[24] Shi Y T, Ding Y L, Yang S H. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429
[25] Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem, 2009, 47: 116-122.
[26] Liu L, Tang C, Zhang Y, Sha X, Tian S, Luo Z, Wei G, Zhu L, Li Y, Fu J, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985-2003.
doi: 10.1111/nph.20355 pmid: 39686522
[27] Song X P, Cao B Y, Xu Z P, Liang L, Xiao J C, Tang W, Xie M H, Wang D, Zhu L, Huang Z, et al. Molecular regulation by H2S of antioxidant and glucose metabolism in cold-sensitive Capsicum. BMC Plant Biol, 2024, 24: 931.
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[3] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[4] 马娟娥, 姚有华, 姚晓华, 吴昆仑, 崔永梅. 青稞HvERF039基因的克隆及功能研究[J]. 作物学报, 2025, 51(9): 2341-2357.
[5] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[6] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[7] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[8] 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239.
[9] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[12] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[13] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[14] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[15] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!