欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1300-1311.doi: 10.3724/SP.J.1006.2024.31035

• 耕作栽培·生理生化 • 上一篇    下一篇

稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究

陆汝华1(), 王文轩2, 曹强1, 田永超1, 朱艳1, 曹卫星1, 刘小军1,*()   

  1. 1南京农业大学国家信息农业工程技术中心 / 智慧农业教育部工程研究中心 / 农业农村部农作物系统分析与决策重点实验室 / 江苏省信息农业重点实验室, 江苏南京 210095
    2人文与社会发展学院, 江苏南京 210095
  • 收稿日期:2023-06-04 接受日期:2023-10-23 出版日期:2024-05-12 网络出版日期:2023-11-30
  • 通讯作者: 刘小军, E-mail: liuxj@njau.edu.cn, Tel: 025-84396804
  • 作者简介:E-mail: 2020101177@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFD2301402);南京农业大学三亚研究院(NAUSY-ZD01);国家自然科学基金项目(32071903)

Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern

LU Ru-Hua1(), WANG Wen-Xuan2, CAO Qiang1, TIAN Yong-Chao1, ZHU Yan1, CAO Wei-Xing1, LIU Xiao-Jun1,*()   

  1. 1National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, Jiangsu, China
    2College of Humanities & Social Development, Nanjing 210095, Jiangsu, China
  • Received:2023-06-04 Accepted:2023-10-23 Published:2024-05-12 Published online:2023-11-30
  • Contact: E-mail: liuxj@njau.edu.cn, Tel: 025-84396804
  • Supported by:
    National Key Research and Development Program of China(2022YFD2301402);Hainan Institute of Nanjing Agricultural University(NAUSY-ZD01);National Natural Science Foundation of China(32071903)

摘要:

优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段, 然而当前关于氮肥和秸秆还田对小麦产量和N2O排放影响的研究仍十分有限。为此, 本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入下小麦产量和N2O排放变化的文献, 运用随机森林建模, 定量分析氮肥和秸秆还田对小麦产量和N2O排放的影响, 并结合情景设置进行了特定地点的小麦产量和N2O排放模拟, 同时评估了碳排放强度(CEE)和净生态系统经济效益(NEEB)。结果表明, 建立的区域尺度小麦产量与N2O排放对氮秸互作响应的随机森林模型, 验证结果R2分别为0.66和0.65, RMSE分别为0.70和1.11。结果表明施氮量和土壤有机质是影响小麦产量和N2O排放的重要因素。综合来看, 达到最大产量所需的氮肥量为208~212 kg hm-2, 达到最小CEE所需的氮肥量为113~130 kg hm-2, 达到最高的NEEB所需的氮肥量为202~205 kg hm-2, 其中在6.75 t hm-2的秸秆投入下施用202 kg hm-2的氮肥可以获得最高的生态收益1.37万元。优化氮肥和秸秆投入具备减少作物碳排放强度并获得最大净生态环境效益的潜力。

关键词: 施氮量, 秸秆投入, 小麦, N2O, 排放模型, 推荐施肥

Abstract:

The optimization of agricultural practices such as nitrogen and straw input may be an effective option for maintaining environmental sustainability. However, previous studies on the effects of nitrogen and straw inputs on wheat growth and N2O emission reduction were limited. Therefore, the present study was based on the literature published from 2000 to 2022 about wheat yield and N2O emissions under different nitrogen and straw inputs amendment in the middle and lower reaches of the Yangtze River, a random forest (RF) model of wheat yield and N2O emission was constructed. And the influence of nitrogen and straw inputs on wheat yield and N2O emissions was quantified. Based on the developed model, wheat yield and N2O emission simulations at the experimental site were carried out in combination with scenario settings, and the carbon emission intensity (CEE) and net ecosystem economic benefits (NEEB) were evaluated. The results were as follow: On the regional scale, an RF model was established for the response of wheat yield and N2O emission to the application of nitrogen fertilizer and straw returning. The verification results were R2 of 0.66 and 0.65, and RMSE of 0.70 and 1.11, respectively. Quantifying the importance of independent variables showed that nitrogen application rate and soil organic matter were essential for yield and N2O models. For nitrogen fertilizer and straw management under different targets, the amount of nitrogen fertilizer required to achieve the highest yield was 208-212 kg hm-2, the amount of nitrogen fertilizer required to achieve the minimum CEE was 113-130 kg hm-2, and the amount of nitrogen fertilizer required to achieve the highest NEEB was 202-205 kg hm-2, of which the highest ecological benefit of 13,669.18 CHY could be obtained by applying 202 kg hm-2 nitrogen fertilizer under the straw input of 6.75 t hm-2. Our results indicate that optimizing nitrogen fertilizer and straw inputs has the potential to reduce crop carbon emission intensity and maximize net ecological and environmental benefits.

Key words: nitrogen application rate, straw inputs, wheat, N2O, emission model, fertilizer recommendation

表1

田间管理措施、生态因子与N2O排放量的描述统计"

指标
Indicator
最小值
Min.
最大值
Max.
平均值
Mean
标准偏差
SD
标准差系数
CV (%)
N rate 0 300 181.89 82.29 45.24
Split N 1 3 2.63 0.50 19.19
Straw rate 0 8.25 1.45 2.40 164.83
pH 5.88 8.09 6.79 0.64 9.43
SOM (g kg-1) 11.00 57.90 20.42 7.78 38.10
TN (g kg-1) 0.51 2.90 1.53 0.46 30.06
LT_Temp (℃) 15.10 19.95 15.96 0.46 2.89
LT_Prec (mm) 750.00 1890.30 1117.32 174.31 15.60
Cum_N2O (kg hm-2) 0.13 7.74 2.42 1.98 81.82

图1

田间管理措施、生态因子与N2O排放量之间的皮尔逊相关性热图 缩写同表1。"

图2

N2O排放和小麦产量模型的训练与验证结果"

图3

各个模型中的特征重要性 a: 一氧化二氮; b: 产量。缩写同表1。"

表2

不同秸秆还田量情景的N2O累积排放和小麦产量模拟模型"

处理
Treatment
N2O累积排放量Cumulative N2O emissions (kg hm-2) 产量
Yield (t hm-2)
LINEAR EXPONENT
S0 y = 0.0077x+1.0226 y = 1.1281e0.004x y = -0.1111x2+47.077x+1506.0
S2.25 y = 0.0078x+1.1241 y = 1.2180e0.0038x y = -0.1117x2+46.961x+1526.2
S4.50 y = 0.0071x+1.2914 y = 1.3763e0.0033x y = -0.1197x2+49.842x+1489.9
S6.75 y = 0.0069x+1.2907 y = 1.3727e0.0033x y = -0.1205x2+50.221x+1491.4

图4

不同氮肥和秸秆投入下的CEE和NEEB响应 处理同表2。"

表3

不同目标下小麦施氮量和秸秆量投入及其净生态环境效益"

模型
Model
秸秆量
Straw rate (t hm-2)
施氮量
N rate (kg hm-2)
收益
Benefit (CHY)
Yield-max 0 212 12,816.00
2.25 210 12,851.00
4.50 208 13,453.00
6.75 208 13,657.88
CEE-LINEAR 0 113 10,702.22
2.25 116 10,934.81
4.50 129 12,029.94
6.75 130 12,255.24
CEE-EXPONENT 0 114 10,750.49
2.25 117 10,981.24
4.50 127 11,951.29
6.75 127 12,135.69
NEEB-LINEAR 0 205 12,829.70
2.25 203 12,863.29
4.50 201 13,464.20
6.75 202 13,669.00
NEEB-EXPONENT 0 205 12,830.40
2.25 203 12,864.52
4.50 201 13,464.99
6.75 202 13,669.18
[1] Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. Achieving yield gains in wheat. Plant Cell Environ, 2012, 35: 1799-1823.
doi: 10.1111/pce.2012.35.issue-10
[2] Van Dijk M, Morley T, Rau M L, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat Food, 2021, 2: 494.
doi: 10.1038/s43016-021-00322-9 pmid: 37117684
[3] Smith K A. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Eur J Soil Sci, 2017, 68: 137-155.
doi: 10.1111/ejss.2017.68.issue-2
[4] Cowan N, Levy P, Maire J, Coyle M, Leeson S R, Famulari D, Carozzi M, Nemitz E, Skiba U. An evaluation of four years of nitrous oxide fluxes after application of ammonium nitrate and urea fertilisers measured using the eddy covariance method. Agric For Meteor, 2020, 280: 107812.
doi: 10.1016/j.agrformet.2019.107812
[5] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: a review. Pedosphere, 2016, 26: 137-147.
doi: 10.1016/S1002-0160(15)60030-3
[6] Millar N, Urrea A, Kahmark K, Shcherbak I, Robertson G P, Ortiz-Monasterio I. Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agric Ecosyst Environ, 2018, 261: 125-132.
doi: 10.1016/j.agee.2018.04.003
[7] Song X T, Liu M, Ju X T, Gao B, Su F, Chen X P, Rees R M. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ Sci Technol, 2018, 52: 12504-12513.
doi: 10.1021/acs.est.8b03931
[8] Duan J Z, Shao Y H, He L, Li X, Hou G G, Li S N, Feng W, Zhu Y J, Wang Y H, Xie Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 12.
[9] Lyu J L, Yin X H, Dorich C, Olave R, Wang X H, Kou C L, Song X. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: a 3-year field measurement from long-term fertilizer experiments. Soil Tillage Res, 2021, 212: 105053.
doi: 10.1016/j.still.2021.105053
[10] Chen H H, Li X C, Hu F, Shi W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob Chang Biol, 2013, 19: 2956-2964.
doi: 10.1111/gcb.2013.19.issue-10
[11] Wang J, Zhu B, Zhang J B, Muller C, Cai Z C. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol Biochem, 2015, 91: 222-231.
doi: 10.1016/j.soilbio.2015.08.039
[12] Huang T, Gao B, Christie P, Ju X. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 2013, 10: 7897-7911.
doi: 10.5194/bg-10-7897-2013
[13] Ambus P, Jensen E S, Robertson G P. Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement. Phyton-Ann Rei Bot, 2001, 41: 7-15.
[14] Yang L, Muhammad I, Chi Y X, Wang D, Zhou X B. Straw return and nitrogen fertilization to maize regulate soil properties, microbial community, and enzyme activities under a dual cropping system. Front Microbiol, 2022, 13: 823963.
doi: 10.3389/fmicb.2022.823963
[15] Huang T, Yang H, Huang C C, Ju X T. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Res, 2017, 204: 1-11.
doi: 10.1016/j.fcr.2017.01.004
[16] Akhtar K, Wang W Y, Ren G X, Khan A, Enguang N, Khan A, Feng Y Z, Yang G H, Wang H Y. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci Total Environ, 2020, 741: 140488.
doi: 10.1016/j.scitotenv.2020.140488
[17] Glenn A J, Moulin A P, Roy A K, Wilson H F. Soil nitrous oxide emissions from no-till canola production under variable rate nitrogen fertilizer management. Geoderma, 2021, 385: 114857.
doi: 10.1016/j.geoderma.2020.114857
[18] Cao J, Zhang Z, Tao F, Zhang L, Luo Y, Zhang J, Han J, Xie J. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric For Meteorol, 2021, 297: 108275.
doi: 10.1016/j.agrformet.2020.108275
[19] Wen G, Ma B L, Vanasse A, Caldwell C D, Smith D L. Optimizing machine learning-based site-specific nitrogen application recommendations for canola production. Field Crops Res, 2022, 288: 108707.
doi: 10.1016/j.fcr.2022.108707
[20] Chen S, Huang Y, Zou J. Relationship between nitrous oxide emission and winter wheat production. Biol Fert Soils, 2008, 44: 985-989.
doi: 10.1007/s00374-008-0284-4
[21] Gao X, Lan T, Deng L, Zeng M. Mushroom residue application affects CH4 and N2O emissions from fields under rice-wheat rotation. Arch Agron Soil Sci, 2017, 63: 748-760.
doi: 10.1080/03650340.2016.1235784
[22] Guo L, Zhang L, Liu L, Sheng F, Cao C, Li C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric Ecosyst Environ, 2021, 322: 107650.
doi: 10.1016/j.agee.2021.107650
[23] Guo T, Luan H, Song D, Zhang S, Zhou W, Liang G. Combined fertilization could increase crop productivity and reduce greenhouse gas intensity through carbon sequestration under rice-wheat rotation. Agronomy (Basel), 2021, 11: 103390.
[24] He H, Li D, Pan F, Wang F, Wu D, Yang S. Effects of nitrogen reduction and optimized fertilization combined with straw return on greenhouse gas emissions and crop yields of a rice-wheat rotation system. Int J Plant Prod, 2022, 16: 669-679.
doi: 10.1007/s42106-022-00212-5
[25] He H, Zhang T, Yao Y, Yang W, Busayo D, Wen X, Chen X, Yang X, Yang S, Ma Y. Tillage methods on greenhouse gas emissions and yields of rice-wheat rotation system in east China polder area. Int J Plant Prod, 2021, 15: 485-498.
doi: 10.1007/s42106-021-00152-6
[26] Hu N, Wang B, Gu Z, Tao B, Zhang Z, Hu S, Zhu L, Meng Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agric Ecosyst Environ, 2016, 223: 115-122.
doi: 10.1016/j.agee.2016.02.027
[27] Ji Y, Liu G, Ma J, Xu H, Yagi K. Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutr Cycl Agroecosyst, 2012, 94: 111-122.
doi: 10.1007/s10705-012-9532-y
[28] Li S H, Guo L J, Cao C G, Li C F. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ Sci Pollut Res, 2021, 28: 5742-5754.
doi: 10.1007/s11356-020-10914-w
[29] Liu G, Ma J, Yang Y, Yu H, Zhang G, Xu H. Effects of straw incorporation methods on nitrous oxide and methane emissions from a wheat-rice rotation system. Pedosphere, 2019, 29: 204-215.
doi: 10.1016/S1002-0160(17)60410-7
[30] Liu S, Qin Y, Zou J, Liu Q. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China. Sci Total Environ, 2010, 408: 906-913.
doi: 10.1016/j.scitotenv.2009.11.002
[31] Ma E, Zhang G, Ma J, Xu H, Cai Z, Yagi K. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr Cycl Agroecosyst, 2010, 88: 463-469.
doi: 10.1007/s10705-010-9369-1
[32] Ma Y C, Kong X W, Yang B, Zhang X L, Yan X Y, Yang J C, Xiong Z Q. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agric Ecosyst Environ, 2013, 164: 209-219.
doi: 10.1016/j.agee.2012.11.003
[33] Wang H, Shen M, Hui D, Chen J, Sun G, Wang X, Lu C, Sheng J, Chen L, Luo Y, Zheng J, Zhang Y. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Soil Tillage Res, 2019, 195: 104377.
doi: 10.1016/j.still.2019.104377
[34] Xia L, Wang S, Yan X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric Ecosyst Environ, 2014, 197: 118-127.
doi: 10.1016/j.agee.2014.08.001
[35] Xiang J, Liu D, Ding W, Yuan J, Lin Y. Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season. J Clean Prod, 2015, 104: 52-58.
doi: 10.1016/j.jclepro.2014.12.038
[36] Yang B, Xiong Z, Wang J, Xu X, Huang Q, Shen Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: a 3-year field experiment. Ecol Eng, 2015, 81: 289-297.
doi: 10.1016/j.ecoleng.2015.04.071
[37] Yao Z, Zheng X, Wang R, Xie B, Butterbach-Bahl K, Zhu J. Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos Environ, 2013, 79: 641-649.
doi: 10.1016/j.atmosenv.2013.07.006
[38] Yao Z, Zheng X, Xie B, Mei B, Wang R, Butterbach-Bahl K, Zhu J, Yin R. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biol Biochem, 2009, 41: 2131-2140.
doi: 10.1016/j.soilbio.2009.07.025
[39] Zhang L, Zheng J, Chen L, Shen M, Zhang X, Zhang M, Bian X, Zhang J, Zhang W. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system. Eur J Agron, 2015, 63: 47-54.
doi: 10.1016/j.eja.2014.11.005
[40] Zou J, Huang Y, Lu Y, Zheng X, Wang Y. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmos Environ, 2005, 39: 4755-4765.
doi: 10.1016/j.atmosenv.2005.04.028
[41] 江波, 杨书运, 马友华, 贺非, 左怀峰, 范东福, 杨小兵. 耕作方式对圩区冬小麦温室气体排放通量的影响. 安徽农业大学学报, 2014, 41: 241-247.
Jiang B, Yang S Y, Ma Y H, He F, Zuo H F, Fan D F, Yang X B, Effects on emission of greenhouse gas by different tillage treatments to winter wheat in polder areas. J Anhui Agric Univ, 2014, 41: 241-247 (in Chinese with English abstract).
[42] 靳红梅, 沈明星, 王海候, 陆长婴, 常志州, 郭瑞华. 秸秆还田模式对稻麦两熟农田麦季CH4和N2O排放特征的影响. 江苏农业学报, 2017, 33: 333-339.
Jin H M, Shen M X, Wang H H, Lu C Y, Chang Z Z, Guo R H. Influence of straw returning patterns on CH4and N2O emission during wheat-growing season in a rice-wheat double cropping system. Jiangsu J Agric Sci, 2017, 33: 333-339 (in Chinese with English abstract).
[43] 牛东, 潘慧, 丛美娟, 尹萍, 吴浩, 孙娟, 朱新开, 郭文善. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响. 麦类作物学报, 2016, 36: 1667-1673.
Niu D, Pan H, Cong M J, Yin P, Wu H, Sun J, Zhu X K, Guo W S. Effect of nitrogen application ratio and straw returning on soil greenhouse gas emission during wheat growing period. J Triticeae Crops, 2016, 36: 1667-1673 (in Chinese with English abstract).
[44] 孙国峰, 郑建初, 陈留根, 何加骏, 张岳芳. 配施猪粪对麦季CH4和N2O排放及温室效应的影响. 生态与农村环境学报, 2012, 28: 349-354.
Sun G F, Zheng J C, Chen L G, He J J, Zhang Y F. Effects of application of pig manure in combination with chemical fertilizers on CH4 and N2O emissions and their greenhouse effects in wheat field. J Ecol Rural Environ, 2012, 28: 349-354 (in Chinese with English abstract).
[45] 孙国峰, 郑建初, 陈留根, 何加骏, 张岳芳. 沼液替代化肥对麦季CH4、N2O排放及温室效应的影响. 农业环境科学学报, 2012, 31: 1654-1661.
Sun G F, Zheng J C, Chen L G, He J J, Zhang Y F. Effects of chemical fertilizers substitution by biogas slurry on CH4 and N2O emissions and their greenhouse effects in wheat field. J Agro-Environ Sci, 2012, 31: 1654-1661 (in Chinese with English abstract).
[46] 王海云, 邢光熹. 不同施氮水平对稻麦轮作农田氧化亚氮排放的影响. 农业环境科学学报, 2009, 28: 2631-2646.
Wang H Y, Xing G X. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation. J Agro-Environ Sci, 2009, 28: 2631-2636 (in Chinese with English abstract).
[47] 张翰林, 吕卫光, 郑宪清, 李双喜, 王金庆, 张娟琴, 何七勇, 袁大伟, 顾晓君. 不同秸秆还田年限对稻麦轮作系统温室气体排放的影响. 中国生态农业学报, 2015, 23: 302-308.
Zhang H L, Lyu W G, Zheng X Q, Li S X, Wang J Q, Zhang J Q, He Q Y, Yuan D W, Gu X J. Effects of years of straw return to soil on greenhouse gas emission in rice/wheat rotation systems. Chin J Eco-Agric, 2015, 23: 302-308 (in Chinese with English abstract).
[48] 张岳芳, 陈留根, 朱普平, 张传胜, 盛婧, 王子臣, 郑建初. 秸秆还田对稻麦两熟高产农田净增温潜势影响的初步研究. 农业环境科学学报, 2012, 31: 1647-1653.
Zhang Y F, Chen L G, Zhu P P, Zhang C S, Sheng J, Wang Z C, Zheng J C. Preliminary study on effect of straw incorporation on net global warming potential in high production rice-wheat double cropping systems. J Agro-Environ Sci, 2012, 31: 1647-1653 (in Chinese with English abstract).
[49] 邹建文. 稻麦轮作生态系统温室气体(CO2、CH4和N2O)排放研究. 南京农业大学博士学位论文, 江苏南京, 2005.
Zou J W. A Study on Greenhouse Gases (CO2, CH4 and N2O) Emission from Rice-winter Wheat Rotations in Southeast China. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2005 (in Chinese with English abstract).
[50] Zhang Z S, Guo L J, Liu T Q, Li C F, Cao C G. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice wheat cropping systems in central China. Atmosph Environ, 2015, 122: 636-644.
doi: 10.1016/j.atmosenv.2015.09.065
[51] Li S H, Guo L J, Cao C G, Li C F. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ Sci Pollut Res, 2021, 28: 5742-5754.
doi: 10.1007/s11356-020-10914-w
[52] Xia L L, Xia Y Q, Li B L, Wang J Y, Wang S W, Zhou W, Yan X Y. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric Ecosyst Environ, 2016, 231: 24-33.
doi: 10.1016/j.agee.2016.06.020
[53] Li B, Fan C H, Zhang H, Chen Z Z, Sun L Y, Xiong Z Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmosph Environ, 2015, 100: 10-19.
doi: 10.1016/j.atmosenv.2014.10.034
[54] Lu R, Zhang P, Fu Z, Jiang J, Wu J, Cao Q, Tian Y, Zhu Y, Cao W, Liu X. Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland. Sci Total Environ, 2023, 871: 161967.
doi: 10.1016/j.scitotenv.2023.161967
[55] Guo C, Liu X, He X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci Total Environ, 2022, 831: 154982.
doi: 10.1016/j.scitotenv.2022.154982
[56] Muhammad I, Wang J, Sainju U M, Zhang S H, Zhao F Z, Khan A. Cover cropping enhances soil microbial biomass and affects microbial community structure: a meta-analysis. Geoderma, 2021, 381: 114696.
doi: 10.1016/j.geoderma.2020.114696
[57] Zhang Y Y, Liu J F, Mu Y J, Pei S W, Lun X X, Chai F H. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmosph Environ, 2011, 45: 2956-2961.
doi: 10.1016/j.atmosenv.2010.10.052
[58] Liu C Y, Wang K, Meng S X, Zheng X H, Zhou Z X, Han S H, Chen D L, Yang Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agric Ecosyst Environ, 2011, 140: 226-233.
doi: 10.1016/j.agee.2010.12.009
[59] Yao Z S, Zheng X H, Xie B H, Mei B L, Wang R, Butterbach-Bahl K, Zhu J G, Yin R. Tillage and crop residue management significantly affects N-trace gas emissions during the non- rice season of a subtropical rice-wheat rotation. Soil Biol Biochem, 2009, 41: 2131-2140.
doi: 10.1016/j.soilbio.2009.07.025
[60] Garcia-Ruiz R, Gomez-Munoz B, Hatch D J, Bol R, Baggs E M. Soil mineral N retention and N2O emissions following combined application of 15N-labelled fertiliser and weed residues. Rapid Commun Mass Spectr, 2012, 26: 2379-2385.
doi: 10.1002/rcm.v26.20
[61] Wang Y Y, Hu Z H, Shang D Y, Xue Y, Islam A, Chen S T. Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat- soybean rotation cropland. Environ Pollut, 2020, 257: 113556.
doi: 10.1016/j.envpol.2019.113556
[62] Bhattacharyya P, Nayak A K, Mohanty S, Tripathi R, Shahid M, Kumar A, Raja R, Panda B B, Roy K S, Neogi S, Dash P K, Shukla A K, Rao K S. Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res, 2013, 129: 93-105.
doi: 10.1016/j.still.2013.01.014
[63] Li Z, Zeng Z, Song Z, Tian D, Huang X, Nie S, Wang J, Jiang L, Luo Y, Cui J, Niu S. Variance and main drivers of field nitrous oxide emissions: a global synthesis. J Clean Prod, 2022, 353: 131686.
doi: 10.1016/j.jclepro.2022.131686
[64] Jiang Z W, Yang S H, Chen X, Pang Q Q, Xu Y, Qi S T, Yu W Q, Dai H D. Controlled release urea improves rice production and reduces environmental pollution: a research based on meta-analysis and machine learning. Environ Sci Pollut Res, 2022, 29: 3587-3599.
doi: 10.1007/s11356-021-15956-2
[65] Villa-Vialaneix N, Follador M, Ratto M, Leip A. A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environl Mod Software, 2012, 34: 51-66.
[66] Qiu H H, Wei W L. Crop straw retention influenced crop yield and greenhouse gas emissions under various external conditions. Environ Sci Pollut Res, 2021, 28: 42362-42371.
doi: 10.1007/s11356-021-13698-9
[67] Rasouli S, Whalen J K, Madramootoo C A. Review: reducing residual soil nitrogen losses from agroecosystems for surface water protection in Quebec and Ontario, Canada: best management practices, policies and perspectives. Can J Soil Sci, 2014, 94: 109-127.
doi: 10.4141/cjss2013-015
[68] Qin Z, Myers D B, Ransom C J, Kitchen N R, Liang S Z, Camberato J J, Carter P R, Ferguson R B, Fernandez F G, Franzen D W, Laboski C A M, Malone B D, Nafziger E D, Sawyer J E, Shanahan J F. Application of machine learning methodologies for predicting corn economic optimal nitrogen rate. Agron J, 2018, 110: 2596-2607.
doi: 10.2134/agronj2018.03.0222
[69] 刘新伟, 龚德平, 巩细民, 王巍, 娄希凤, 韩玲君, 杨德桦, 赵竹青. 湖北江北农场小麦肥效试验与施肥推荐. 麦类作物学报, 2012, 32: 338-343.
Liu X W, Gong D P, Gong X M, Wang W, Lou X F, Han L J, Yang D H, Zhao Z Q. Fertilizer effect on wheat and recommendation offertilizer for wheat production in Jiangbei farm. J Triticeae Crops, 2012, 32: 338-343 (in Chinese with English abstract).
[70] 周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49: 3100-3109.
doi: 10.3724/SP.J.1006.2023.21070
Zhou Q, Li L T, Zhang L L, Miao Y H, Wang Y L. Effects of interaction of nitrogen level and sowing rate on yield, growth, and ecological field characteristics of winter wheat. Acta Agron Sin, 2023, 49: 3100-3109 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21070
[1] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[2] 郭松, 郭慧婷, 张裕梁, 钱紫慧, 王子君, 路佳明, 汪源, 赵灿, 王维领, 张洪程, 杨凤萍, 霍中洋. 侧深施控释氮肥运筹方式对水稻产量、NH3挥发和温室气体排放的影响[J]. 作物学报, 2024, 50(6): 1525-1539.
[3] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[4] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[5] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[6] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1419.
[7] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[8] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[9] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[10] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[11] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[12] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[13] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[14] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[15] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .