作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1801-1813.doi: 10.3724/SP.J.1006.2025.41086
所属专题: 小麦:遗传育种·种质资源·分子遗传学
赵超男1(), 王金凤1, 张玉1, 张丽1, 李瑞琦1, 王鹏飞1, 李鸽子1, 张宏军2, 虞波1,*(
), 康国章1,*(
)
ZHAO Chao-Nan1(), WANG Jin-Feng1, ZHANG Yu1, ZHANG Li1, LI Rui-Qi1, WANG Peng-Fei1, LI Ge-Zi1, ZHANG Hong-Jun2, YU Bo1,*(
), KANG Guo-Zhang1,*(
)
摘要:
挖掘小麦氮高效的种质和基因资源, 揭示其分子机制和遗传效应, 是当前小麦氮效率研究的重要内容和目标。本研究以255份不同小麦品种组成的自然群体为试验材料, 对每个品种1叶1心幼苗分别进行低氮(low nitrogen, LN, 0.05 mmol L-1 NO3-)和充足供氮(sufficient nitrogen, SN, 1.00 mmol L-1 NO3-) 2个水培条件处理, 培养28 d后, 在低氮和充足供氮处理下测定17个表型指标, 通过对55K SNP芯片进行质控过滤筛选出38,215个高质量单核苷酸多态性(single nucleotide polymorphism, SNPs)位点,结合FarmCPU、MLM以及MLM+Q+K模型进行全基因组关联分析(genome-wide association study, GWAS)。该群体在LN和SN水平下17个表型指标比值(LS, LN/SN)的频率分布均呈正态分布, 对17个LS指标进行全基因组关联分析, 共检测到1161个显著位点(P≤0.001), 发现有103个标记至少在2个模型中同时被检测到, 有8个SNP至少关联了4个性状, 其中AX-110548993 (3B)和AX-111802919 (4D)为新位点。2个新位点上下游5 Mb范围区间内含有267个候选基因, 其中位于4D染色体上的SNP AX-111802919包括3个直接参与或调控氮吸收转运的候选基因: TraesCS4D02G361500编码硝酸盐转运蛋白(NRT1.1), TraesCS4D02G362100编码锌指蛋白CONSTANS-LIKE 1, TraesCS4D02G362800编码1个GATA转录因子蛋白。
[1] | Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428. |
[2] | Wang H Y, Li Q Z, Du X, Zhao L C, Wang N. Evaluation of potential crop productivity based on remote sensing and agro-ecological zones around the world. Geocarto Int, 2018, 33: 713-722. |
[3] |
Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9: 597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127 |
[4] | 侯萌瑶, 张丽, 王知文, 杨殿林, 王丽丽, 修伟明, 赵建宁. 中国主要农作物化肥用量估算. 农业资源与环境学报, 2017, 34: 360-367. |
Hou M Y, Zhang L, Wang Z W, Yang D L, Wang L L, Xiu W M, Zhao J N. Estimation of fertilizer usage from main crops in China. J Agric Resour Environ, 2017, 34: 360-367 (in Chinese with English abstract). | |
[5] | Li J, Xu F, Yang J M. Improved economic and environmental outcomes from targeted fertilizer policy. Environ Sci Pollut Res Int, 2022, 29: 10101-10111. |
[6] |
靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析. 作物学报, 2021, 47: 394-404.
doi: 10.3724/SP.J.1006.2021.01024 |
Jin Y R, Liu J D, Liu C Y, Jia D X, Liu P, Wang Y M. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.). Acta Agron Sin, 2021, 47: 394-404 (in Chinese with English abstract). | |
[7] | Vidican R, Mălinaș A, Rotar I, Kadar R, Deac V, Mălinaș C. Assessing wheat response to N fertilization in a wheat-maize- soybean long-term rotation through NUE measurements. Agronomy, 2020, 10: 941. |
[8] | Frels K, Guttieri M, Joyce B, Leavitt B, Baenziger P S. Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Res, 2018, 217: 82-92. |
[9] |
张鹏霞, 周秀文, 梁雪, 郭营, 赵岩, 李斯深, 孔凡美. 小麦苗期生物量及氮效率相关性状的全基因组关联分析. 中国农业科学, 2021, 54: 4487-4544.
doi: 10.3864/j.issn.0578-1752.2021.21.001 |
Zhang P X, Zhou X W, Liang X, Guo Y, Zhao Y, Li S S, Kong F M. Genome-wide association analysis for yield and nitrogen efficiency related traits of wheat at seedling stage. Sci Agric Sin, 2021, 54: 4487-4544 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.21.001 |
|
[10] | 廖荣伟, 刘晶淼. 作物根系形态观测方法研究进展讨论. 气象科技, 2008, 36: 429-435. |
Liao R W, Liu J M. Progresses in methods for observing crop root pattern system. Meteor Sci Technol, 2008, 36: 429-435 (in Chinese with English abstract). | |
[11] | An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84. |
[12] |
Xu Y F, Wang R F, Tong Y P, Zhao H T, Xie Q G, Liu D C, Zhang A M, Li B, Xu H X, An D G. Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet, 2014, 127: 59-72.
doi: 10.1007/s00122-013-2201-y pmid: 24072207 |
[13] | Sandhu N, Sethi M, Kaur H, Dhillon A, Kumar A, Kaur A, Kaur S, Varinderpal S, Bentley A R, Chhuneja P. Mining natural genetic variations for nitrogen use efficiency utilizing nested synthetic hexaploid wheat introgression libraries. Environ Exp Bot, 2023, 212: 105394. |
[14] | 赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19: 1199-1204. |
Zhao H T, Wang R F, Xu Y F, An D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chin J Eco-Agric, 2011, 19: 1199-1204 (in Chinese with English abstract). | |
[15] | 胡成梅.小麦苗期耐低氮胁迫相关性状的全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2020. |
Hu C M. Genome-wide Association Analysis of Low Nitrogen Stress Tolerance Related Traits in Wheat Seedling Stage. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2020 (in Chinese with English abstract). | |
[16] | Hoagland D R, Arnon D I. The Water Culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circular, 1950. |
[17] |
Lynch J M, Barbano D M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int, 1999, 82: 1389-1398.
pmid: 10589493 |
[18] | Siddiqi M Y, Glass A D M. Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr, 1981, 4: 289-302. |
[19] | 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20: 1349-1357. |
Du B J, Gao H J, Chang J, Zhang L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. J Plant Nutr Fert, 2014, 20: 1349-1357 (in Chinese with English abstract). | |
[20] | Hu C C, Li J H, Liu J J, Zhang D Z, Jin L Q, Yang N, Bai B P, Wang Z H, Feng S W, Ru Z G, et al. Genome-wide association study on seedling phenotypic traits of wheat under different nitrogen conditions. Plants, 2023, 12: 4050. |
[21] | Shi H W, Wang W C, Gao L F, Wu J R, Hu C M, Yan H S, Shi Y G, Li N, Ma Y Z, Zhou Y B, et al. Genome-wide association study of seedling nitrogen-use efficiency-associated traits in common wheat (Triticum aestivum L.). Crop J, 2024, 12: 222-231. |
[22] | Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289-4302. |
[23] |
吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因. 中国水稻科学, 2024, 38: 516-524.
doi: 10.16819/j.1001-7216.2024.231010 |
Lyu Y, Liu C C, Yang L B, Cao X L, Wang Y Y, Tong Y, Hazman M, Qian Q, Shang L G, Guo L B. Identification of candidate genes for rice nitrogen use efficiency by genome-wide association analysis. Chin J Rice Sci, 2024, 38: 516-524 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2024.231010 |
|
[24] | 栾海业, 孟炜, 张英虎, 李钰, 朱琳洁, 王裕, 刘雨倩, 徐肖, 刘方方, 沈会权. 大麦耐盐相关性状的全基因组关联分析. 麦类作物学报, 2024, 44: 729-734. |
Luan H Y, Meng W, Zhang Y H, Li Y, Zhu L J, Wang Y, Liu Y Q, Xu X, Liu F F, Shen H Q. Genome-wide association analysis of traits related to salt tolerance in barley. J Triticeae Crops, 2024, 44: 729-734 (in Chinese with English abstract). | |
[25] |
Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W L. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873 |
[26] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739 |
[27] |
Zhang C, Dong S S, Xu J Y, He W M, Yang T L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35: 1786-1788.
doi: 10.1093/bioinformatics/bty875 pmid: 30321304 |
[28] |
Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007 |
[29] |
禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 等. 小麦茎秆性状的转录组测序及全基因组关联分析. 作物学报, 2024, 50: 2187-2206.
doi: 10.3724/SP.J.1006.2024.31076 |
Yu H L, Wu W X, Pei X X, Liu X Y, Deng G W, Li X C, Zhen S C, Wang J S, Zhao Y T, Xu H X, et al. Transcriptome sequencing and genome-wide association study of wheat stem traits. Acta Agron Sin, 2024, 50: 2187-2206 (in Chinese with English abstract). | |
[30] |
张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测. 作物学报, 2024, 50: 871-886.
doi: 10.3724/SP.J.1006.2024.34124 |
Zhang L L, Yang J, Wang R J. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants. Acta Agron Sin, 2024, 50: 871-886 (in Chinese with English abstract). | |
[31] | Pan Y H, Zhu J, Hong Y, Zhang M N, Lyu C, Guo B J, Shen H Q, Xu X, Xu R G. Screening of stable resistant accessions and identification of resistance loci to barley yellow mosaic virus disease. Peer J, 2022, 10: e13128. |
[32] |
Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354.
doi: 10.1038/ng.548 pmid: 20208533 |
[33] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[34] | Liu J D, He Z H, Rasheed A, Wen W E, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol, 2017, 17: 220. |
[35] | Hao C Y, Wang Y Q, Chao S, Li T, Liu H X, Wang L F, Zhang X Y. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep, 2017, 7: 41247. |
[36] | 张锡洲, 吴沂珀, 李廷轩. 不同施氮水平下不同氮利用效率小黑麦植株氮素积累分配特性. 中国生态农业学报, 2014, 22: 151-158. |
Zhang X Z, Wu Y P, Li T X. Accumulation and distribution of nitrogen in Triticale varieties with different nitrogen utilization efficiencies under different nitrogen application levels. Chin J Eco-Agric, 2014, 22: 151-158 (in Chinese with English abstract). | |
[37] |
Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459 |
[38] |
Guo Y, Kong F M, Xu Y F, Zhao Y, Liang X, Wang Y Y, An D G, Li S S. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet, 2012, 124: 851-865.
doi: 10.1007/s00122-011-1749-7 pmid: 22089330 |
[39] |
Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet, 2007, 114: 403-419.
doi: 10.1007/s00122-006-0429-5 pmid: 17180378 |
[40] |
翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45: 1488-1502.
doi: 10.3724/SP.J.1006.2019.91002 |
Zhai J P, Li H X, Bi H H, Zhou S Y, Luo X Y, Chen S L, Cheng X Y, Xu H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agron Sin, 2019, 45: 1488-1502 (in Chinese with English abstract). | |
[41] |
王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘. 中国农业科学, 2023, 56: 801-820.
doi: 10.3864/j.issn.0578-1752.2023.05.001 |
Wang M, Dong Q F, Gao S A, Liu D Z, Lu S, Qiao P F, Chen L, Hu Y G. Genome-wide association studies and mining for favorable loci of root traits at seedling stage in wheat. Sci Agric Sin, 2023, 56: 801-820 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.05.001 |
|
[42] | Hong M J, Ko C S, Kim D Y. Genome-wide association study to identify marker-trait associations for seed color in colored wheat (Triticum aestivum L.). Int J Mol Sci, 2024, 25: 3600. |
[43] |
Wang W, Hu B, Li A F, Chu C C. NRT1.1s in plants: functions beyond nitrate transport. J Exp Bot, 2020, 71: 4373-4379.
doi: 10.1093/jxb/erz554 pmid: 31832669 |
[44] |
Maghiaoui A, Bouguyon E, Cuesta C, Perrine-Walker F, Alcon C, Krouk G, Benková E, Nacry P, Gojon A, Bach L. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. J Exp Bot, 2020, 71: 4480-4494.
doi: 10.1093/jxb/eraa242 pmid: 32428238 |
[45] |
Holtan H E, Bandong S, Marion C M, Adam L, Tiwari S, Shen Y, Maloof J N, Maszle D R, Ohto M A, Preuss S, et al. BBX32 an Arabidopsis B-Box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiol, 2011, 156: 2109-2123.
doi: 10.1104/pp.111.177139 pmid: 21632973 |
[46] | Gaudinier A, Rodriguez-Medina J, Zhang L F, Olson A, Liseron-Monfils C, Bågman A M, Foret J, Abbitt S, Tang M, Li B H, et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 2018, 563: 259-264. |
[47] | 王娟, 兰海燕. GATA转录因子对植物发育和胁迫响应调控的研究进展. 植物生理学报, 2016, 52: 1785-1794. |
Wang J, Lan H Y. Advances in regulation of GATA transcription factor to plant development and stress responses. Plant Physiol J, 2016, 52: 1785-1794 (in Chinese with English abstract). | |
[48] |
Wang P F, Li G Z, Li G W, Yuan S S, Wang C Y, Xie Y X, Guo T C, Kang G Z, Wang D W. TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D contribute to phosphate uptake and plant growth in bread wheat. New Phytol, 2021, 231: 1968-1983.
doi: 10.1111/nph.17534 pmid: 34096624 |
[49] | Chen Z D, Wang J F, Dong D Q, Lou C, Zhang Y, Wang Y X, Yu B, Wang P F, Kang G Z. Comparative analysis of TaPHT1; 9 function using CRISPR-edited mutants, ectopic transgenic plants and their wild types under soil conditions. Plant Soil, 2025, 509: 249-260. |
[50] | Wang J F, Chen Z D, Shi H T, Lou C, Fu K X, Wang Y X, Yu B, Guo T C, Wang Y H, Wang P F, et al. Pi-efficient wheat cultivars screened by using both functional marker CAPS-799 and field experiment. Field Crops Res, 2025, 321: 109688. |
[51] | Wang H F, Yang B B, Zhao X Y, Chen H L, Liu F, Ru Y T, Wei X R, Fu X F, Guo W W, Li X M, et al. Identification of novel QTL for seedling root architectural traits in the D genome of natural and resynthetic allohexaploid wheat. Agronomy, 2024, 14: 608. |
[1] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
[2] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
[3] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[4] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振扑, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
[5] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
[6] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
[7] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳 霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
[8] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
[9] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
[10] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
[11] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[12] | 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价[J]. 作物学报, 2025, 51(7): 1949-1958. |
[13] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[14] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
[15] | 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756. |
|