欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2371-2386.doi: 10.3724/SP.J.1006.2025.51022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价

胡润慧1,2(), 汪军成1,3, 司二静1,3, 张宏1,3, 李兴茂4, 马小乐1,3, 孟亚雄1,3, 王化俊1,3, 刘青1,2, 姚立蓉1,3,*(), 李葆春1,2,*()   

  1. 1干旱生境作物学国家重点实验室, 甘肃兰州 730070
    2甘肃农业大学生命科学技术学院, 甘肃兰州 730070
    3甘肃农业大学农学院, 甘肃兰州 730070
    4甘肃省农业科学院旱地农业研究所, 甘肃兰州 730070
  • 收稿日期:2025-02-27 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-11
  • 通讯作者: *李葆春, E-mail: libc@gsau.edu.com; 姚立蓉, E-mail: ylr0384@163.com
  • 作者简介:E-mail: 2319674543@qq.com
  • 基金资助:
    本研究由甘肃省科技计划联合计划基金项目(24JRRA840);现代寒旱特色农业种业攻关项目(ZYGG-2025-3);现代寒旱特色农业种业攻关项目(ZYGG-2025-12-3);甘肃省重点人才项目(2023RCXM70);甘肃省科技厅重点研发项目(25YFNA032);中央引导地方科技发展资金项目(25ZYJA002);甘肃省科技计划项目(24CXNA038);甘肃省自然科学基金重点项目(24JRRA637);甘肃省教育厅产业支撑计划项目(2021CYZC-12);甘肃农业大学伏羲青年英才计划(Gaufx-03Y06);甘肃农业大学伏羲青年英才计划(Ufx-04Y011);国家重点实验室开放基金项目(GSCS-2021-05)

Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance

HU Run-Hui1,2(), WANG Jun-Cheng1,3, SI Er-Jing1,3, ZHANG Hong1,3, LI Xing-Mao4, MA Xiao-Le1,3, MENG Ya-Xiong1,3, WANG Hua-Jun1,3, LIU Qing1,2, YAO Li-Rong1,3,*(), LI Bao-Chun1,2,*()   

  1. 1State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    4Dryland Agriculture Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2025-02-27 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-11
  • Contact: *E-mail: libc@gsau.edu.com; E-mail: ylr0384@163.com
  • Supported by:
    Gansu Province Science and Technology Joint Plan Fund Project(24JRRA840);Modern Cold and Drought Characteristic Agricultural Seed Industry Research Project(ZYGG-2025-3);Modern Cold and Drought Characteristic Agricultural Seed Industry Research Project(ZYGG-2025-12-3);Key Talent Project of Gansu Province(2023RCXM70);Key Research and Development Project of Gansu Provincial Department of Science and Technology(25YFNA032);Central Guidance for Local Scientific and Technological Development Funding Projects(25ZYJA002);Science and Technology Program of Gansu Province(24CXNA038);Key Project of Natural Science Foundation of Gansu Province(24JRRA637);Industrial Support Project of Colleges and Universities in Gansu Province(2021CYZC-12);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y06);Fuxi Young Talents Fund of Gansu Agricultural University(GAUfx-04Y011);State Key Laboratory of Aridland Crop Science Open Fund(GSCS-2021-05)

摘要:

通过建立小麦品种(系)抗旱耐盐评价体系, 筛选抗旱耐盐小麦种质, 以8份不同基因型小麦品种(系)为材料, 采用苗期水培法, 在干旱处理(20% PEG-6000)、盐处理(200 mmol L-1 NaCl)和双胁迫处理(20% PEG-6000+200 mmol L-1 NaCl)下, 测定各小麦品种在不同胁迫下的生物量、根系相关指标和生理指标等19个性状表征值, 计算各指标抗旱耐盐胁迫指数, 并利用综合隶属函数法进行主成分分析和聚类分析, 最终评价各小麦抗旱耐盐能力。与正常处理相比, 在3种胁迫条件下, 8份小麦品种叶片相对含水量整体呈下降趋势; 保护酶活性(SOD, POD和CAT)、质膜氧化程度(MDA含量)、脯氨酸含量在各小麦体内整体呈上升趋势; 而可溶性蛋白质含量在不同小麦品种间变化呈下降趋势; 根平均体积、根系表面积、根总长等指标呈上升趋势; 3种处理下, 指标的最高变异系数可达116.86%, 确定叶绿素含量(SPAD)、可溶性蛋白含量(SP)、根系表面积、根平均体积、根总长和根冠比6个指标可以作为评价不同小麦(系)抗旱耐盐能力的鉴定指标, 以此为依据, 对其进行系统聚类分析, 最终得到西农535、陇育11号、兰19、兰天10和陇紫麦1号抗旱性较强; 陇鉴114和西科麦510的耐盐性较强; 西农535和陇育11号在双胁迫处理下的表现性最好。

关键词: 小麦, 苗期, 抗旱耐盐, 筛选指标, 综合评价

Abstract:

A drought and salt stress evaluation system was established to screen for drought- and salt-tolerant wheat germplasm. Eight wheat genotypes (varieties/lines) were used as experimental materials, and hydroponic culture was employed at the seedling stage. Plants were subjected to drought stress (20% PEG-6000), salt stress (200 mmol L-1 NaCl), and combined stress (20% PEG-6000+200 mmol L-1 NaCl). A total of 19 traits, including biomass, root-related parameters, and physiological indices, were measured under each stress condition. Drought and salt tolerance indices were calculated for each trait, followed by principal component analysis (PCA) and cluster analysis using the comprehensive membership function method to evaluate the stress tolerance of the different wheat varieties. Compared with the control, leaf relative water content decreased to varying degrees under all three stress treatments. In contrast, protective enzyme activities (SOD, POD, and CAT), membrane lipid peroxidation (MDA content), and proline accumulation showed overall increases. Soluble protein content declined across the different wheat varieties. Root morphological indicators such as average root volume, root surface area, and total root length generally increased under stress. The coefficient of variation among traits reached up to 116.86% across treatments. PCA was performed on the drought and salt tolerance indices of the 19 traits, and the comprehensive evaluation index (D value) was calculated using the membership function method. Multiple regression analysis identified chlorophyll content (SPAD), soluble protein content (SP), root surface area, average root volume, total root length, and root-to-crown ratio as key indicators for evaluating drought and salt tolerance in wheat lines. Systematic cluster analysis further revealed that Xinong 535, Longyu 11, Lan 19, Lantian 10, and Longzimai 1 exhibited strong drought resistance; Longjian 114 and Xikemai 510 showed strong salt tolerance; and Xinong 535 and Longyu 11 performed best under combined drought and salt stress.

Key words: wheat, seedling stage, drought resistant and salt tolerant, screening criteria, comprehensive evaluation

表1

3种胁迫处理下小麦各性状值"

性状
Trait
正常处理Normal treatment 干旱处理Drought treatment
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
株高H (cm) 31.57 a 3.67 11.63 28.58 b 3.49 12.20
叶片鲜重FW (g) 0.26 a 0.08 30.18 0.18 b 0.08 44.03
叶片干重LDMC (g) 0.18 a 0.07 37.44 0.12 b 0.07 59.93
地上生物量AGB (g) 0.31 a 0.05 16.58 0.20 b 0.09 43.06
地下生物量BG (g) 0.17 a 0.04 25.64 0.12 b 0.03 22.78
叶绿素含量SPAD 2.25 a 0.29 12.78 1.52 b 0.62 40.59
超氧化歧物酶SOD 0.60 a 0.14 22.87 0.48 b 0.16 32.88
过氧化酶POD 0.50 a 0.15 29.88 0.35 bc 0.12 34.12
过氧化氢酶CAT 185.13 a 101.43 54.79 159.57 a 104.82 65.69
脯氨酸PRO 183.62 a 15.63 8.51 178.01 b 23.94 13.45
可溶性蛋白SP 0.39 a 0.22 57.19 0.33 a 0.25 74.33
丙二醛MDA 0.14 a 0.01 10.45 0.27 b 0.07 24.47
根冠比R/S 2.03 a 0.69 33.90 1.79 a 0.76 42.51
根总数量TNR 75.33 a 20.57 27.30 54.58 b 22.73 41.63
根尖数RTN 58.21 a 21.51 36.95 42.5 bc 22.17 52.17
根总长TRH (cm) 25.08 a 5.76 22.97 23.3 ab 6.44 27.66
根平均直径RAD (mm) 0.22 a 0.02 8.18 0.27 bc 0.04 15.02
根系表面积RSA (cm2) 294.27 a 96.89 32.93 279.12 a 83.92 30.07
根平均体积RVE (cm3) 39.35 a 18.92 48.08 35.71 a 14.07 39.40
性状
Trait
盐处理Salting 双胁迫处理Dual coercion treatment
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
株高H (cm) 26.30 c 3.42 13.00 24.76 c 3.98 16.06
叶片鲜重FW (g) 0.11 c 0.04 38.50 0.05 d 0.02 44.13
叶片干重LDMC (g) 0.10 b 0.04 38.63 0.03 c 0.02 58.80
地上生物量AGB (g) 0.12 c 0.05 36.49 0.07 d 0.02 34.43
地下生物量BG (g) 0.10 c 0.02 17.32 0.09 c 0.03 30.75
叶绿素含量SPAD 1.52 b 0.61 40.00 1.07 c 0.67 62.82
超氧化歧物酶SOD 0.46 b 0.17 36.50 0.25 c 0.20 82.27
过氧化酶POD 0.38 c 0.11 29.11 0.26 bd 0.27 102.11
过氧化氢酶CAT 156.30 a 110.80 70.89 127.28 a 126.40 99.31
脯氨酸PRO 171.36 bc 21.80 12.72 124.75 a 92.11 73.83
可溶性蛋白SP 0.30 a 0.23 75.38 0.13 b 0.16 116.86
丙二醛MDA 0.26 bc 0.04 16.52 0.19 d 0.14 73.61
根冠比R/S 1.34 b 0.54 4.05 0.90 c 0.26 29.33
根总数量TNR 63.50 b 24.96 39.31 51.54 b 24.18 46.92
根尖数RTN 52.54 ab 28.59 54.42 36.00 c 18.56 51.55
根总长TRH (cm) 21.49 b 6.04 28.12 20.62 b 6.14 29.80
根平均直径RAD (mm) 0.25 c 0.03 11.53 0.27 bd 0.04 14.52
根系表面积RSA (cm2) 249.77 a 75.36 30.17 252.59 a 89.56 35.46
根平均体积RVE (cm3) 31.46 a 13.20 41.95 32.72 a 15.37 46.97

图1

指标抗旱耐盐指数主成分散点图 缩写同表1。"

表2

PEG 胁迫条件下小麦苗期各综合指标载荷系数"

性状
Trait
主成分 Principal component
PC1 PC2 PC3 PC4 PC5 PC6
株高H 0.22 0.32 0.03 0.18 -0.14 0.34
叶片鲜重FW 0.39 -0.05 0.12 0.19 0.02 -0.27
叶片干重LDMC 0.39 -0.06 0.01 0.17 -0.05 -0.24
地上生物量AGB 0.35 0.14 0.27 0.19 -0.03 -0.08
地下生物量BG 0.13 0.34 -0.24 0.23 0.10 -0.04
叶绿素含量SPAD 0.10 0.39 0.14 0.00 0.02 0.26
超氧化歧物SOD -0.05 -0.01 -0.10 0.21 0.63 0.20
过氧化酶POD 0.04 0.15 0.11 0.26 0.49 0.10
过氧化氢酶CAT -0.18 0.38 0.07 0.03 -0.03 -0.06
脯氨酸PRO 0.02 -0.23 0.39 -0.05 0.31 0.18
可溶性蛋白SP 0.03 0.42 -0.24 0.04 -0.13 -0.05
丙二醛MDA 0.19 -0.05 0.15 -0.19 -0.24 0.64
根冠比R/S 0.25 -0.11 0.45 0.03 -0.11 -0.03
根总数量TNR 0.19 0.22 0.11 -0.35 0.10 -0.35
根尖数RTN 0.12 0.11 0.14 -0.49 0.30 -0.15
根总长TRH 0.28 0.08 -0.20 -0.40 0.09 0.12
根平均直径RAD 0.22 -0.30 -0.19 0.31 -0.08 0.01
根系表面积RSA 0.33 -0.10 -0.36 -0.17 0.06 0.13
根平均体积RVE 0.27 -0.18 -0.37 -0.08 0.14 0.06
方差贡献率Variance contribution rate (%) 24.60 17.56 12.85 11.76 9.06 6.41
累计贡献率Cumulative (%) 24.60 42.17 55.01 66.77 75.84 82.25

表3

NaCl 胁迫条件下小麦苗期各综合指标载荷系数"

性状
Trait
主成分 Principal component
PC1 PC2 PC3 PC4 PC5 PC6
株高H 0.33 0.05 0.06 -0.23 -0.04 -0.28
叶片鲜重FW 0.25 -0.31 0.25 -0.18 0.13 -0.08
叶片干重LDMC 0.01 0 0.25 0 0.59 0.37
地上生物量AGB 0.37 0.01 0.00 -0.04 0.24 0.18
地下生物量BG -0.01 0.54 -0.03 -0.09 0.28 -0.11
叶绿素含量SPAD 0.22 0.28 -0.45 -0.04 0.03 0.06
超氧化歧物SOD 0.21 -0.05 -0.07 -0.35 -0.22 0.29
过氧化酶POD 0.14 -0.17 0.16 -0.22 0.21 -0.13
过氧化氢酶CAT 0.16 0.17 -0.18 0.21 -0.20 0.21
脯氨酸PRO -0.06 -0.30 -0.12 0.46 -0.04 0.11
可溶性蛋白SP 0.17 0.36 0.14 -0.12 -0.34 0.21
丙二醛MDA 0.10 0.11 -0.47 0.11 0.43 0.02
根冠比R/S 0.34 -0.23 0.02 0.02 0.09 0.20
根总数量TNR 0.34 -0.06 -0.11 -0.03 -0.14 0.17
根尖数RTN 0.20 -0.22 -0.14 0.39 -0.05 0.11
根总长TRH 0.24 0.07 0.02 0.26 0.06 -0.55
根平均直径RAD -0.14 0.30 0.36 0.27 0.08 0.27
根系表面积RSA 0.31 0.15 0.20 0.30 0.02 -0.24
根平均体积RVE 0.24 0.16 0.38 0.25 -0.15 0.09
方差贡献率Variance contribution rate (%) 29.15 13.86 10.67 9.82 8.09 6.23
累计贡献率Cumulative (%) 29.15 43.01 53.68 63.50 71.58 77.82

表4

双胁迫条件下小麦苗期各综合指标载荷系数"

性状
Trait
主成分 Principal component
PC1 PC2 PC3 PC4 PC5 PC6
高H 0.16 0.16 -0.02 0.49 -0.37 -0.06
叶片鲜重FW 0.27 -0.10 0.29 0.06 -0.05 -0.48
叶片干重LDMC 0.24 0.03 0.20 0.07 0.51 -0.29
地上生物量AGB 0.21 0.02 0.46 0.07 -0.16 -0.10
地下生物量BG 0.23 -0.36 -0.15 -0.08 0.11 -0.12
叶绿素含量SPAD 0.26 -0.25 0.12 -0.31 0.12 0.12
超氧化歧物SOD -0.28 0.15 0.29 0.10 0.07 0.03
过氧化酶POD -0.14 0.30 -0.08 0.38 0.18 0.03
过氧化氢酶CAT 0.20 -0.15 0.26 -0.13 -0.20 0.54
脯氨酸PRO -0.17 0.23 0.20 -0.37 0.10 -0.20
可溶性蛋白SP 0.25 -0.24 0.20 0.22 -0.21 0.10
丙二醛MDA 0.06 0.33 0.04 -0.38 -0.18 -0.11
根冠比R/S -0.06 0.29 0.45 0.02 -0.17 0.09
根总数量TNR 0.33 0.10 -0.15 0.11 -0.01 -0.30
根尖数RTN 0.30 0.20 -0.27 -0.11 -0.08 0.12
根总长TRH 0.22 0.35 0.01 -0.24 0.05 0.05
根平均直径RAD -0.17 -0.20 0.30 0.14 0.41 0.15
根系表面积RSA 0.30 0.27 -0.01 0.01 0.24 0.24
根平均体积RVE 0.28 0.21 -0.03 0.21 0.34 0.31
方差贡献率Variance contribution rate (%) 29.10 21.99 11.96 7.81 7.17 6.65
累计贡献率Cumulative(%) 29.10 51.09 63.05 70.86 78.03 84.69

图2

小麦苗期各性状抗旱耐盐胁迫指数与抗旱耐盐综合评价值(D)的相关系数"

表5

小麦品种抗旱最优模型预测"

多元回归方程
Multiple regression equation
决定系数
R2
F
F-value
P
P-value
D = -1.23+1.87X1 0.35 11.66 0.002
D = -1.27+1.82X1+0.10X2 0.35 5.60 0.011
D = -2.17+1.33X1+0.62X2+0.83X3 0.63 11.14 <0.001
D = -2.52+1.25X1+0.56X2+0.83X3+0.48X4 0.67 9.50 <0.001
D = -2.60+1.37X1+0.54X2+0.80X3+0.13X4+0.37X5 0.68 7.71 <0.001
D = -2.62+1.45X1+0.56X2+0.81X3-0.46X4-0.40X5+0.38X6 0.69 6.29 0.001

表6

小麦品种耐盐最优模型预测"

多元回归方程
Multiple regression equation
决定系数
R2
F
F-value
P
P-value
D = -1.03+1.55X1 0.22 6.24 0.02
D = -1.47+1.11X1+1.00X2 0.36 5.95 0.009
D = -2.10+0.65X1+1.02X2+1.31X3 0.65 12.65 <0.001
D = -2.70+0.45X1+1.00X2+1.10X3+1.01X4 0.76 15.4 <0.001
D = -2.83+0.53X1+0.57X2+0.76X3-0.31X4+2.02X5 0.88 25.55 <0.001
D = -2.84+0.54X1+0.55X2+0.76X3-0.26X4+1.93X5+0.05X6 0.88 20.12 <0.001

表7

小麦品种抗旱耐盐最优模型预测"

多元回归方程
Multiple regression equation
决定系数
R2
F
F-value
P
P-value
D = -0.33+0.51X1 0.06 0.82 0.38
D = -0.31+0.22X1+0.49X2 0.10 0.71 0.51
D = -1.07+0.54X1+0.55X2+1.13X3 0.33 1.99 0.17
D = -1.80+0.26X1+0.0.71X2+0.63X3+1.32X4 0.72 7.02 0.005
D = -1.63+0.07X1+0.55X2+0.62X3+0.0.06X4+1.22X5 0.88 14.49 <0.001
D = -1.72+0.19X1+0.51X2+0.63X3+0.75X4-0.23X5+0.82X6 0.91 14.06 <0.001

图3

不同小麦品种(系)不同胁迫条件下抗旱耐盐能力的系统聚力图 缩写同表1。LZM 1: 陇紫麦1号; XN 535: 西农535; LY 11: 陇育11号; XKM 510: 西科麦510; LT10: 兰天10; L19: 兰19; LJ 114: 陇鉴114; LT15: 兰天15号。"

图4

不同抗旱性小麦品种(系)农艺性状综合评价 缩写同表1。*: P < 0.05。I: 干旱处理, II: 盐处理, III: 干旱加盐处理。"

图5

不同耐盐性小麦品种(系)农艺性状综合评价 缩写同表1。处理同图4。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图6

不同抗旱耐盐小麦品种(系)农艺性状综合评价 缩写同表1。处理同图4。*: P < 0.05; **: P < 0.01。"

[1] Mustafa H, Ilyas N, Akhtar N, Raja N I, Zainab T, Shah T, Ahmad A, Ahmad P. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol Environ Saf, 2021, 223: 112519.
[2] 冯起, 尹鑫卫, 朱猛, 张举涛, 刘蔚, 席海洋, 鱼腾飞, 杨林山, 刘文, 陆志翔. 统筹推进西北地区盐碱地综合治理利用: 现状、挑战与对策建议. 中国科学院院刊, 2024, 39: 2060-2073.
Feng Q, Yin X W, Zhu M, Zhang J T, Liu W, Xi H Y, Yu T F, Yang L S, Liu W, Lu Z X. Overall promotion of integrated management and utilization of saline-alkali land in northwest China: conditions, challenges, and recommendations. Bull Chin Acad Sci, 2024, 39: 2060-2073 (in Chinese with English abstract).
[3] 刘金萍, 高奔, 李欣, 宋杰, 范海, 王宝山, 赵可夫. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响. 生态学报, 2010, 30: 5485-5490.
Liu J P, Gao B, Li X, Song J, Fan H, Wang B S, Zhao K F. The effects of salinity and drought interaction on seed germination and seedling growth of Suaeda salsa L. from different habitats. Acta Ecol Sin, 2010, 30: 5485-5490 (in Chinese with English abstract).
[4] 汝晨, 胡笑涛, 吕梦薇, 陈滇豫, 王文娥, 宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响. 中国农业科学, 2022, 55: 3303-3320.
doi: 10.3864/j.issn.0578-1752.2022.17.004
Ru C, Hu X T, Lyu M W, Chen D Y, Wang W E, Song T Y. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis. Sci Agric Sin, 2022, 55: 3303-3320 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.17.004
[5] 马永忠, 蔡福, 赵先丽, 王阳. 花后持续干旱对玉米生理参数及产量的影响. 气象与环境学报, 2019, 35(2): 102-106.
Ma Y Z, Cai F, Zhao X L, Wang Y. Responses of main physiological parameters and yield of spring maize to drought stress after flowering. J Meteor Environ, 2019, 35(2): 102-106 (in Chinese with English abstract).
[6] 孙淑英, 陈贵林. 干旱胁迫对蒙古黄芪生殖生长及活性成分的影响. 分子植物育种, 2019, 17: 7559-7565.
Sun S Y, Chen G L. Effects of drought stress on reproductive growth and effective components of Astragalus membranaceus var. mongholicus. Mol Plant Breed, 2019, 17: 7559-7565 (in Chinese with English abstract).
[7] 赵可夫, 李法曾. 中国盐生植物. 北京: 高等教育出版社, 2013.
Zhao K F, Li F Z. Chinese Halophytes. Beijing: Higher Education Press, 2013 (in Chinese).
[8] 米富贵, 王桂花. 禾本科牧草基因工程技术及应用. 北京: 科学出版社, 2010.
Mi F G, Wang G H. Genetic Engineering Technology and Application of Poaceae Forage. Beijing: Science Press, 2010 (in Chinese).
[9] 刘欣. 植物的耐盐生物学机制研究进展. 哈尔滨师范大学自然科学学报, 2015, 31(2): 140-145.
Liu X. Advances of salt tolerance biology mechanism in plants. Nat Sci J Harbin Normal Univ, 2015, 31(2): 140-145 (in Chinese with English abstract).
[10] 朱金方, 夏江宝, 陆兆华, 刘京涛, 孙景宽. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响. 西北植物学报, 2012, 32: 124-130.
Zhu J F, Xia J B, Lu Z H, Liu J T, Sun J K. Growth, physiological and biochemical characteristics of Tamarix chinensis seedlings under salt-drought intercross stress. Acta Bot Boreali-Occident Sin, 2012, 32: 124-130 (in Chinese with English abstract).
[11] 沈玉芳, 曲东, 王保莉, 张兴昌. 干旱胁迫下磷营养对不同作物苗期根系导水率的影响. 作物学报, 2005, 31: 214-218.
Shen Y F, Qu D, Wang B L, Zhang X C. Effects of phosphorus on root hydraulic conductivity of crops under drought stress. Acta Agron Sin, 2005, 31: 214-218 (in Chinese with English abstract).
[12] 惠宏杉, 林立昊, 齐军仓, 廖乐, 王超龙, 程海涛. 干旱胁迫对大麦幼苗根系的影响. 麦类作物学报, 2015, 35: 1291-1297.
Hui H S, Lin L H, Qi J C, Liao L, Wang C L, Cheng H T. Effect of drought stress on the roots of barley seedling. J Triticeae Crops, 2015, 35: 1291-1297 (in Chinese with English abstract).
[13] Khan A. 小麦根对盐胁迫的响应机制研究. 东北师范大学硕士学位论文, 吉林长春, 2020.
Khan A. Responsive Mechanisms of Wheat (Triticum aestivum L.) Root to Salinity Stress. MS Thesis of Northeast Normal University, Changchun, Jilin, 2020 (in Chinese with English abstract).
[14] Wu A J, Fang Y, Liu S, Wang H, Xu B C, Zhang S Q, Deng X P, Palta J A, Siddique K H, Chen Y L. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 2021, 19: 100391.
[15] 宗毓铮, 张函青, 李萍, 张东升, 林文, 薛建福, 高志强, 郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4984-4995.
doi: 10.3864/j.issn.0578-1752.2021.23.005
Zong Y Z, Zhang H Q, Li P, Zhang D S, Lin W, Xue J F, Gao Z Q, Hao X Y. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in north China. Sci Agric Sin, 2021, 54: 4984-4995 (in Chinese with English abstract).
[16] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 等. 小麦芽期和苗期耐盐鉴定方法的适用性评价. 作物学报, 2024, 50: 1193-1206.
doi: 10.3724/SP.J.1006.2024.31049
Cheng J T, Bai X, Gu Y J, Zhang X W, Guo H J, Chang L F, Zhang S W, Zhang X J, Li X, et al. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages. Acta Agron Sin, 2024, 50: 1193-1206 (in Chinese with English abstract).
[17] 邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995.
Zou Q. Guidance of Plant Physiological and Biochemical Experiments. Beijing: China Agriculture Press, 1995 (in Chinese).
[18] 丁富功, 侯泽豪, 卢奕霏, 宋婧含, 孙悦, 马东方, 刘易科, 朱展望, 张鹏飞, 张迎新, 等. 小麦不同组织器官叶绿素测定方法的比较研究. 东北农业科学, 2022, 47(5): 111-115.
Ding F G, Hou Z H, Lu Y F, Song J H, Sun Y, Ma D F, Liu Y K, Zhu Z W, Zhang P F, Zhang Y X, et al. Comparative study on determination of chlorophyll in different tissues and organs of wheat. J Northeast Agric Sci, 2022, 47(5): 111-115 (in Chinese with English abstract).
[19] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判. 作物学报, 2023, 49: 570-582.
doi: 10.3724/SP.J.1006.2023.21008
Meng Y, Tian W Z, Wen P F, Ding Z Q, He L, Duan J Z, Liu W D, Guo T C, Feng W. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages. Acta Agron Sin, 2023, 49: 570-582 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21008
[20] Xu Z S, Chen M, Li L C, Ma Z Y. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Int Plant Biology, 2011, 53: 570-585.
[21] 姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015, 48: 2379-2389.
doi: 10.3864/j.issn.0578-1752.2015.12.011
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region. Sci Agric Sin, 2015, 48: 2379-2389 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.12.011
[22] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、 水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315-322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stresses on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315-322 (in Chinese with English abstract).
[23] 李国领, 齐学礼, 张志强, 罗鹏, 辛均安, 李延峰, 史利霞. 不同小麦品种的生理和产量特性对灌浆期干旱胁迫的响应. 河南农业科学, 2018, 47(4): 8-14.
Li G L, Qi X L, Zhang Z Q, Luo P, Xin J A, Li Y F, Shi L X. Response of physiological and yield characters of different wheat cultivars to drought stress at grain filling stage. J Henan Agric Sci, 2018, 47(4): 8-14 (in Chinese with English abstract).
[24] 段凌凤, 傅金阳, 王新轶, 施家伟, 李为坤, 杨万能. 基于深度学习的小麦抗旱相关根系表型原位测量与分析. 农业机械学报, 2024, 55(5): 207-217.
Duan L F, Fu J Y, Wang X Y, Shi J W, Li W K, Yang W N. In-situ measurement and analysis of drought-related wheat root phenotypic traits. Trans CSAM, 2024, 55(5): 207-217 (in Chinese with English abstract).
[25] Datir S S, Inamdar A. Biochemical responses of wheat cultivars to PEG-induced drought stress. Russ Agric Sci, 2019, 45: 5-12.
[26] 王旭明, 赵夏夏, 陈景阳, 许江环, 周柏霖, 王盼盼, 莫素, 莫俊杰, 谢平, 周鸿凯. 盐胁迫下海水稻抗逆生理响应分析. 中国生态农业学报(中英文), 2019, 27: 747-756.
Wang X M, Zhao X X, Chen J Y, Xu J H, Zhou B L, Wang P P, Mo S, Mo J J, Xie P, Zhou H K. Physiological adversity resistance of sea rice to salinity stress. Chin J Eco-Agric, 2019, 27: 747-756 (in Chinese with English abstract).
[27] 陈春舟, 马占军, 孟亚雄, 马小乐, 王化俊, 李葆春. 小麦种质资源抗旱耐盐性评价及种质筛选. 分子植物育种, 2021, 19: 4820-4835.
Chen C Z, Ma Z J, Meng Y X, Ma X L, Wang H J, Li B C. Evaluation and screening of wheat germplasm resources for drought and salt tolerance. Mol Plant Breed, 2021, 19: 4820-4835 (in Chinese with English abstract).
[28] 兰巨生, 胡福顺, 张景瑞. 作物抗旱指数的概念和统计方法. 华北农学报, 1990, 5(2): 20-25.
doi: 10.3321/j.issn:1000-7091.1990.02.004
Lan J S, Hu F S, Zhang J R. The concept and statistical method of drought resistance index in crops. Acta Agric Boreali-Sin, 1990, 5(2): 20-25 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1990.02.004
[29] 范蓉. 基于生理指标与基因表达量评价棉花抗旱耐盐性. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2020.
Fan R. Evaluation of Cotton Drought and Salt Tolerance Based on Physiological Indexes and Gene Expression. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2020 (in Chinese with English abstract).
[30] 盛雨婷, 生林山, 陆峻一, 赵爱菊, 李夕梅. 基于形态指标和转录组的小麦抗旱与耐盐相关性分析. 山西农业科学, 2021, 49: 1426-1432.
Sheng Y T, Sheng L S, Lu J Y, Zhao A J, Li X M. Correlation analysis of drought resistance and salt tolerance based on morphological index and transcriptome in wheat. J Shanxi Agric Sci, 2021, 49: 1426-1432 (in Chinese with English abstract).
[31] 高宝云, 张军. 9个冬小麦品种对苗期干旱的生理响应及抗旱性评价. 山西农业科学, 2017, 45: 340-345.
Gao B Y, Zhang J. Biochemical responses of 9 winter wheat cultivars to drought stress at seedling stage and drought resistance evaluation. J Shanxi Agric Sci, 2017, 45: 340-345 (in Chinese with English abstract).
[32] 袁海涛, 傅秀云, 郝鲁湘, 贾德新, 张超. 耐盐小麦主要农艺性状的表现及其与产量的关系. 麦类作物学报, 1996, 16(5): 26-28.
Yuan H T, Fu X Y, Hao L X, Jia D X, Zhang C. Performance of main agronomic characters of salt-tolerant wheat and their relationship with yield. Tritical Crops, 1996, 16(5): 26-28 (in Chinese).
[33] 王一凡, 杨江伟, 唐勋, 晋昕, 张宁, 司怀军. 马铃薯响应磷胁迫机制及磷高效利用育种. 中国马铃薯, 2021, 35: 68-74.
Wang Y F, Yang J W, Tang X, Jin X, Zhang N, Si H J. Mechanism of potato response to phosphorus stress and high-efficiency phosphorus breeding. Chin Potato J, 2021, 35: 68-74 (in Chinese with English abstract).
[1] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[4] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[7] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[8] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[9] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[10] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[11] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[12] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[13] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
[14] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[15] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!