欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3005-3012.doi: 10.3724/SP.J.1006.2025.55021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同海拔生态区花生含油量和蔗糖含量的差异及蔗糖含量关联分析

郭建斌1(), 原小燕2, 符明联2, 陈伟刚1, 罗怀勇1, 刘念1, 黄莉1, 周小静1, 姜慧芳1, 廖伯寿1, 雷永1,*()   

  1. 1 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2 云南省农业科学院经济作物研究所, 云南昆明 650205
  • 收稿日期:2025-03-18 接受日期:2025-07-09 出版日期:2025-11-12 网络出版日期:2025-07-14
  • 通讯作者: *雷永, E-mail: leiyong@caas.cn
  • 作者简介:E-mail: guojianbin1990@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFD1200201);农作物种质资源保护项目(19210163);湖北省支持种业高质量发展资金项目(HBZY2023B00305);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13-Germplasm Resource Evaluation)

Differences in oil and sucrose content of peanuts in ecological regions at different altitudes and association study of sucrose content

GUO Jian-Bin1(), YUAN Xiao-Yan2, FU Ming-Lian2, CHEN Wei-Gang1, LUO Huai-Yong1, LIU Nian1, HUANG Li1, ZHOU Xiao-Jing1, JIANG Hui-Fang1, LIAO Bo-Shou1, LEI Yong1,*()   

  1. 1 Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2 Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2025-03-18 Accepted:2025-07-09 Published:2025-11-12 Published online:2025-07-14
  • Contact: *E-mail: leiyong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD1200201);National Program for Crop Germplasm Protection of China(19210163);Project of the Development for High-quality Seed Industry of Hubei Province(HBZY2023B00305);China Agriculture Research System of MOF and MARA(CARS-13-Germplasm Resource Evaluation)

摘要:

含油量、蔗糖含量分别是油用型、食用型花生最为关键的品质性状。高海拔冷凉地区是扩大花生种植面积, 提升花生产能的重要途径。为探究不同海拔生态区对花生含油量和蔗糖含量的影响, 本研究在低海拔地区的武汉和高海拔地区的昆明2个环境下, 连续2年分别种植404份花生资源材料, 并对含油量和蔗糖含量进行测定分析。结果表明, 高海拔地区种植的花生含油量降低、蔗糖含量升高, 且蔗糖含量升高幅度(205.26%)远大于含油量降低幅度(2.37%)。通过比较分析, 在低海拔武汉种植条件下, 所有材料的含糖量均低于5% (高糖标准), 仅有3份材料在高、低海拔条件下表现为高油或接近高油(含油量≥55%), 可作为高海拔地区油用型品种培育的优良亲本。不同类型和不同籽粒大小材料的含油量和蔗糖含量受不同海拔生态区的影响不同, 大粒材料的含油量、蔗糖含量受海拔生态区的影响大于小粒材料。此外, 对292份材料的蔗糖含量进行了关联分析, 共检测到4个与蔗糖含量极显著关联的SSR标记, 解释5.85%~7.68%的表型变异, 分别位于A09、B01、B05和B09染色体上。与前期含油量关联分析结果进行比较, 发现与含油量显著关联的标记pPGPseq8D9也位于A09染色体上, 但位置不同, 分别位于A09染色体的10.45 Mb和119.60 Mb处。海拔影响含油量、蔗糖含量等主要品质指标, 因此生产上要重视高海拔生态区对花生含油量和蔗糖含量的影响。高海拔地区是发展食用型花生的优势区域, 种植的花生蔗糖含量大幅度提高, 但高海拔地区发展油用型花生应重点选择稳定高油的品种以减少高海拔生态区对含油量的影响。

关键词: 花生, 海拔, 含油量, 蔗糖含量, 关联分析

Abstract:

Oil content and sucrose content are the most important quality traits for oil-use and edible peanuts, respectively. Cultivating peanuts in high-altitude, cooler regions is an important strategy to expand planting areas and enhance production capacity. To investigate the effects of altitude on peanut oil and sucrose contents, a total of 404 peanut germplasms were planted in Wuhan and Kunming over two consecutive years, and their oil and sucrose contents were measured. The results showed that peanuts grown in high-altitude regions had decreased oil content and increased sucrose content, with the increase in sucrose being much greater than the reduction in oil. Comparative analysis revealed that no accessions with high sucrose content (> 5%) were found in the Wuhan environment, while only three accessions showed stable and high oil content across both altitudes, indicating their potential as elite parents for breeding oil-use varieties adapted to high-altitude regions. The effects of altitude on oil and sucrose contents varied among accessions with different botanical types and seed sizes, with large-seeded accessions being more sensitive to altitude-related ecological factors than small-seeded ones. Additionally, an association study for sucrose content identified four significant SSR markers, explaining 5.85%-7.68% of the phenotypic variation, located on chromosomes A09, B01, B05, and B09. Notably, when compared with our previous oil content association study, the marker pPGPseq8D9, significantly associated with oil content, was also located on chromosome A09, though at a different position 10.45 Mb for sucrose and 119.60 Mb for oil. These findings highlight that altitude significantly affects key quality traits such as oil and sucrose content. Therefore, the influence of high-altitude ecological conditions on peanut quality should be carefully considered in production. The substantial increase in sucrose content makes high-altitude regions favorable for developing edible peanut varieties, whereas the development of oil-use varieties in such regions should prioritize selecting genotypes with stable and high oil content to mitigate the negative impact of altitude.

Key words: peanut, altitude, oil content, sucrose content, association study

图1

花生资源材料含油量和蔗糖含量在不同环境下的表型分布 2021WH: 2021年武汉; 2022WH: 2022年武汉; 2021KM: 2021年昆明; 2022KM: 2022年昆明。"

表1

花生资源含油量和蔗糖含量的统计分析"

性状
Trait
年份
Year
地点
Location
最小值
Min.
最大值
Max.
均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
夏皮洛-威尔克
W (P-value)
含油量
Oil content (%)
2021 武汉 Wuhan 46.44 59.25 52.65 1.86 3.53 -0.03 0.68 0.994 (0.197)
昆明 Kunming 44.87 57.20 51.48 2.26 4.40 0.03 -0.25 0.997 (0.831)
2022 武汉 Wuhan 47.45 56.58 52.83 1.28 2.43 -0.11 1.15 0.988 (0.008)
昆明 Kunming 45.26 54.83 51.33 1.63 3.17 -0.70 0.89 0.967 (0)
蔗糖含量
Sucrose content (%)
2021 武汉 Wuhan 0.20 4.82 1.83 0.64 34.92 0.59 1.20 0.987 (0.005)
昆明 Kunming 1.28 10.52 6.03 1.27 21.13 0.09 0.42 0.996 (0.612)
2022 武汉 Wuhan 0.41 4.48 1.98 0.55 27.75 0.41 1.43 0.984 (0.001)
昆明 Kunming 3.29 8.92 5.60 0.99 17.68 0.22 0.12 0.995 (0.379)

表2

不同海拔条件下含油量相对稳定且高的材料"

编号No. 品种名称
Cultivar
植物学类型
Botanical type
百仁重
Hundred-seed weight (g)
含油量 Oil content (%)
2021 2022
武汉
Wuhan
昆明
Kunming
武汉
Wuhan
昆明
Kunming
W143 豫花9326 Yuhua 9326 普通型 Virginia type 85.37 56.26 54.89 55.13 54.64
W301 ZJ8 珍珠豆型 Spanish type 72.59 57.67 54.94 55.00 54.02
W303 ZJ12 珍珠豆型 Spanish type 89.01 57.06 56.54 55.78 54.02

图2

不同类型花生资源在不同海拔下含油量和蔗糖含量的比较 ** 表示在0.01概率水平差异显著。Irregular: 中间型; Virginia: 普通型; Spanish: 珍珠豆型; Peruvian: 龙生型; Valencia: 多粒型。"

表3

不同籽粒大小花生资源在不同海拔下含油量和蔗糖含量的比较"

百仁重
HSW (g)
含油量Oil content (%) 蔗糖含量Sucrose content (%)
武汉
Wuhan
昆明
Kunming
差异显著性
Significance of difference
武汉
Wuhan
昆明
Kunming
差异显著性
Significance of difference
≤ 50 51.89±1.44 51.79±1.58 0.10 1.90±0.59 5.40±0.93 -3.50**
50-80 52.49±1.35 51.35±1.51 1.14** 1.88±0.52 5.71±0.99 -3.83**
80-100 53.30±1.14 51.47±1.63 1.83** 1.95±0.41 6.01±0.82 -4.06**
≥ 100 53.70±0.88 51.16±1.56 2.54** 1.90±0.44 6.27±0.93 -4.37**

图3

不同等位基因个体蔗糖含量的效应 缩写同图1。210:210, 214:214和220:220代表蔗糖含量关联标记AHGS1228的不同等位基因, 其他关联标记与此类似。不同字母代表在0.05水平上的显著性差异。"

表4

与蔗糖含量相关的SSR标记位点"

环境
Environment
关联标记
Associated marker
物理位置
Physical position (Mb)
F
F-value
P
P-value
贡献率
PVE (%)
优异等位基因
Favorable allele
2021KM AHGS1228 B05 (151.00) 10.88 3.01E-05 7.68 AHGS1228-210 bp
AHGS1283 A09 (10.45) 10.21 5.66E-05 7.58 AHGS1283-280 bp
2022KM AGGS1056 B01 (18.67) 10.40 4.50E-05 6.46 AGGS1056-212 bp
2022WH AHGS1901 B09 (55.47) 16.34 7.02E-05 5.85 AHGS1901-251 bp
[1] 廖伯寿. 深化花生抗性聚合改良支撑产业绿色高效发展. 民主与科学, 2024, (5): 10-12.
Liao B S. Deepen the green and efficient development of peanut resistance polymerization improvement support industry. Democr Sci, 2024, (5): 10-12 (in Chinese).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 汤松. 我国花生发展概况、存在的问题及措施建议. 花生学报, 2003, 32(增刊1): 16-23.
Tang S. General situation, existing problems and suggestions of peanut development in China. J Peanut Sci, 2003, 32(S1): 16-23 (in Chinese).
[4] 郭洪海, 杨萍, 杨丽萍, 李新华, 万书波, 符明联. 云贵高原花生生产与品质特征. 中国农学通报, 2011, 27(3): 221-225.
Guo H H, Yang P, Yang L P, Li X H, Wan S B, Fu M L. The characteristics of production and quality of peanut in Yungui Plateau. Chin Agric Sci Bull, 2011, 27(3): 221-225 (in Chinese with English abstract).
[5] 傅抱璞, 虞静明, 卢其尧. 山地气候资源与开发利用. 南京: 南京大学出版社, 1996. pp 165-179.
Fu B P, Yu J M, Lu Q Y. Mountain Climate Resources and Development and Utilization. Nanjing: Nanjing University Press, 1996. pp 165-179 (in Chinese).
[6] 潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良. 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 2009, 18: 722-730.
doi: 10.16258/j.cnki.1674-5906(2009)02-0722-09
Pan H L, Li M H, Cai X H, Wu J, Du Z, Liu X L. Responses of growth and ecophsiology of plants to altitude. Eco J Environ Sci, 2009, 18: 722-730 (in Chinese with English abstract).
[7] 王玉娇. 海拔条件和施氮量对小麦产量及品质的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2021.
Wang Y J. Effects of Altitude Conditions and Nitrogen Application Rate on Wheat Yield and Quality. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2021 (in Chinese with English abstract).
[8] Bertin P, Busocoro J P, Tilquin J P, Kinet J M, Bouharmont J. Field evaluation and selection of rice somaclonal variants at different altitudes. Plant Breed, 1996, 115: 183-188.
[9] 陈学君, 曹广才, 贾银锁, 吴东兵, 陈婧, 于亚雄, 李唯, 李杰. 玉米生育期的海拔效应研究. 中国生态农业学报, 2009, 17: 527-532.
Chen X J, Cao G C, Jia Y S, Wu D B, Chen J, Yu Y X, Li W, Li J. Influence of elevation on growth duration of maize (Zea mays L.). Chin J Eco-Agric, 2009, 17: 527-532 (in Chinese with English abstract).
[10] 谭亚玲, 洪汝科, 陈金凤, 张忠林, 谭学林. 海拔高度对不同水稻品种生长的影响研究. 种子, 2009, 28(7): 27-30.
Tan Y L, Hong R K, Chen J F, Zhang Z L, Tan X L. Effects of altitude on growth of different rice varieties. Seed, 2009, 28(7): 27-30 (in Chinese with English abstract).
[11] 张晓春, 石有明, 尹学伟, 周燕, 黄华磊, 高志宏, 钟巍然. 不同海拔高度间甘蓝型油菜产量和品质的差异. 西南农业学报, 2012, 25: 2000-2004.
Zhang X C, Shi Y M, Yin X W, Zhou Y, Huang H L, Gao Z H, Zhong W R. Study on yield and quality of rapeseed (Brassica napus L.) in different altitude. Southwest China J Agric Sci, 2012, 25: 2000-2004 (in Chinese with English abstract).
[12] 李春喜, 冯海生, 闫慧颖, 裴剑民, 李永仁. 不同海拔生态区甜高粱和玉米及甜高粱不同刈割次数的养分含量. 草地学报, 2016, 24: 425-432.
doi: 10.11733/j.issn.1007-0435.2016.02.027
Li C X, Feng H S, Yan H Y, Pei J M, Li Y R. Nutrient content of sweet sorghum and corns in different altitude regions and sweet sorghum in different clipping frequency. Acta Agrest Sin, 2016, 24: 425-432 (in Chinese with English abstract).
[13] 刘淑云, 董树亭, 胡昌浩. 不同海拔高度对玉米品质性状影响的研究. 玉米科学, 2005, 13(2): 68-71.
Liu S Y, Dong S T, Hu C H. The study of latitude and altitude affecting to maize quality. J Maize Sci, 2005, 13(2): 68-71 (in Chinese with English abstract).
[14] 李静, 袁继超, 蔡光泽. 海拔对水稻产量和品质的影响研究进展. 中国农学通报, 2013, 29(24): 1-4.
Li J, Yuan J C, Cai G Z. Advances in the research of elevation on rice yield and quality. Chin Agric Sci Bull, 2013, 29(24): 1-4 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2012-2734
[15] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, et al. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.
doi: 10.1186/s12863-020-00863-1 pmid: 32513099
[16] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757-763.
[17] 陈娜, 程果, 潘丽娟, 陈明娜, 张小燕, 王冕, 王通, 许静, 禹山林, 孙泓希, 等. 东北地区收获期低温对花生品质影响及耐低温品种选. 植物生理学报, 2020, 56: 2417-2427.
Chen N, Cheng G, Pan L J, Chen M N, Zhang X Y, Wang M, Wang T, Xu J, Yu S L, Sun H X, et al. Effect of low temperature on peanut quality and screening of low temperature tolerant varieties in Northeast China. Plant Physiol J, 2020, 56: 2417-2427 (in Chinese with English abstract).
[18] 周倩, 梅乐, 刘亚萍. 海拔和收获期对小京生花生还原糖含量的影响. 浙江农业科学, 2020, 61: 266-267.
doi: 10.16178/j.issn.0528-9017.20200218
Zhou Q, Mei L, Liu Y P. Effects of altitude and harvest period on reducing sugar content of Xiaojingsheng peanut. J Zhejiang Agric Sci, 2020, 61: 266-267 (in Chinese with English abstract).
[19] 郭建斌, 李威涛, 丁膺宾, 徐思亮, 淮东欣, 刘念, 陈伟刚, 黄莉, 罗怀勇, 周小静, 等. 花生籽仁不同发育时期不同部位主要营养成分变化. 中国油料作物学报, 2020, 42: 1051-1057.
Guo J B, Li W T, Ding Y B, Xu S L, Huai D X, Liu N, Chen W G, Huang L, Luo H Y, Zhou X J, et al. Variation of nutritional components in different developmental stages and different parts of seeds in peanut. Chin J Oil Crop Sci, 2020, 42: 1051-1057 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019289
[20] Song Y Y, Rowland D L, Tillman B L, Wilson C H, Sarnoski P J, Zurweller B A. Impact of seed maturity on season-long physiological performance and offspring seed quality in peanut (Arachis hypogaea L.). Field Crops Res, 2022, 288: 108674.
[21] Guo J J, Qi F Y, Qin L, Zhang M N, Sun Z Q, Li H Y, Cui M J, Zhang M Y, Li C Y, Li X N, et al. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Front Genet, 2023, 13: 1089389.
[22] Li W T, Huang L, Liu N, Chen Y N, Guo J B, Yu B L, Luo H Y, Zhou X J, Huai D X, Chen W G, et al. Identification of a stable major sucrose-related QTL and diagnostic marker for flavor improvement in peanut. Theor Appl Genet, 2023, 136: 78.
doi: 10.1007/s00122-023-04306-0 pmid: 36952020
[23] Wang F F, Miao H R, Zhang S Z, Hu X H, Li C J, Chu Y, Chen C, Zhong W, Zhang T Y, Wang H, et al. Identification of a major QTL underlying sugar content in peanut kernels based on the RIL mapping population. Front Plant Sci, 2024, 15: 1423586.
[24] Huai D X, Zhi C Y, Wu J, Xue X M, Hu M L, Zhang J N, Liu N, Huang L, Yan L Y, Chen Y N, et al. Unveiling the molecular regulatory mechanisms underlying sucrose accumulation and oil reduction in peanut kernels through genetic mapping and transcriptome analysis. Plant Physiol Biochem, 2024, 208: 108448.
[1] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[2] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[3] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[4] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[5] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[6] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[7] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[8] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[9] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[10] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[11] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[12] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[13] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[14] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[15] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!