欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2775-2787.doi: 10.3724/SP.J.1006.2025.54006

• 耕作栽培·生理生化 • 上一篇    下一篇

石灰性褐土条件下高粱与玉米耐瘠薄特性及对土壤肥力响应的比较

陈昊翔(), 万鑫杰, 陈青, 王劲松, 董二伟, 王媛, 黄晓磊, 刘秋霞, 焦晓燕()   

  1. 山西农业大学资源环境学院, 山西太原 030031
  • 收稿日期:2025-01-06 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-16
  • 通讯作者: *焦晓燕, E-mail: xiaoyan_jiao@126.com
  • 作者简介:E-mail: haoxiang_chen9@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A20);山西省重点研发计划项目(202302140601008)

Comparison of low-fertility tolerance and response of sorghum and maize to soil fertility based on a long-term experiment on calcareous cinnamon soil

CHEN Hao-Xiang(), WAN Xin-Jie, CHEN Qing, WANG Jin-Song, DONG Er-Wei, WANG Yuan, HUANG Xiao-Lei, LIU Qiu-Xia, JIAO Xiao-Yan()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2025-01-06 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-16
  • Contact: *E-mail: xiaoyan_jiao@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20);Shanxi Key R & D Project(202302140601008)

摘要:

基于长期定位试验, 比较高粱和玉米2种作物耐瘠性和对不同土壤肥力的响应, 为同一区域瘠薄土壤种植高粱替代玉米提供理论支撑。长期不同施肥定位试验始于2011年, 共设CK (不施肥)、PK (缺氮)、NK (缺磷)、NP (缺钾)、NPK (氮磷钾肥)、MS (秸秆还田配施有机肥)和NPKMS (氮磷钾肥秸秆还田配施肥有机肥) 7个处理并形成了不同的土壤肥力, 比较研究高粱和玉米产量及其构成、生长发育及养分吸收对土壤肥力响应的差异。结果表明, CK和PK处理的高粱产量高于玉米, 其余处理的玉米产量高于高粱。与NPKMS处理相比, CK、PK、NK和NP处理的高粱产量分别降低52.4%~57.0%、49.6%~51.0%、18.4%~40.0%和4.1%~18.0%, 玉米产量降低70.7%~73.2%、68.4%~73.1%、21.0%~44.3%和10.0%~22.4%; CK、PK和NK处理下2种作物单位面积穗数和穗粒数均显著降低, 其中, CK和PK处理降低玉米单粒重, 但增加高粱单粒重。与NPKMS处理相比, CK、PK和NK处理推迟2种作物的花期, 但对玉米的影响更为明显; 高粱四叶期前作物相对生长速率(CGR)低于玉米, 苗期氮、磷及钾吸收量也小于玉米, 但四叶期至花期高粱CGR大于玉米; 高粱花期叶面积指数(LAI)及地上部生物量、氮磷钾吸收量均高于玉米, 与玉米相比, 养分亏缺对高粱生物量和CGR影响较小。整体来看, 高粱氮、磷及钾收获指数和生理利用效率小于玉米, 但CK和PK处理下高粱氮、磷收获指数和氮、磷及钾生理效率与玉米相当, 甚至高于玉米。对土壤养分、籽粒产量及其构成和养分吸收利用的相关性分析表明, 土壤养分含量与2种作物的产量、单位面积穗数和穗粒数, 以及玉米的单粒重均呈正相关, 与高粱单粒重呈负相关。综上, 土壤养分亏缺时高粱产量、养分吸收利用能力高于玉米, 养分胁迫降低了2种作物单位面积穗数和穗粒数, 尽管也降低玉米单粒重但提高了高粱的单粒重; 延长了2种作物营养生长阶段, 但对高粱的影响小于玉米, 本研究为2种作物合理施肥及同区域因地适种提供了理论依据。

关键词: 高粱, 玉米, 土壤肥力, 产量及构成, 生长发育, 养分吸收

Abstract:

To provide theoretical support for replacing maize with sorghum on marginal soils within the same region, this study compared the tolerance of sorghum and maize to low soil fertility and their responses to varying fertility levels based on a long-term field experiment. The experiment, initiated in 2011, included seven fertilization treatments: CK (no fertilization), PK (no nitrogen), NK (no phosphorus), NP (no potassium), NPK (complete NPK fertilizers), MS (straw return combined with organic fertilizer), and NPKMS (NPK fertilizers with straw return and organic fertilizer), resulting in a gradient of soil fertility levels. Yield and its components, growth and development, and nutrient uptake of both crops were comparatively analyzed. Results showed that under CK and PK treatments, sorghum yielded more than maize, whereas maize outperformed sorghum under the other treatments. Compared with the NPKMS treatment, sorghum yields under CK, PK, NK, and NP decreased by 52.4%-57.0%, 49.6%-51.0%, 18.4%-40.0%, and 4.1%-18.0%, respectively; in contrast, maize yields declined by 70.7%-73.2%, 68.4%-73.1%, 21.0%-44.3%, and 10.0%-22.4%, respectively. The CK, PK, and NK treatments significantly reduced panicle number per unit area and grain number per panicle in both crops. Additionally, CK and PK reduced maize grain weight but increased that of sorghum. Compared to NPKMS, CK, PK, and NK treatments delayed anthesis in both crops, with a more pronounced effect in maize. Before the four-leaf stage, sorghum exhibited lower crop growth rate (CGR) and lower N, P, and K uptake than maize. However, from the four-leaf stage to anthesis, sorghum surpassed maize in CGR, resulting in higher leaf area index (LAI), aboveground biomass, and nutrient uptake at anthesis. Sorghum was less affected by nutrient deficiency in terms of biomass accumulation and CGR. Overall, sorghum had a lower harvest index and lower use efficiencies for N, P, and K than maize. However, under CK and PK treatments, sorghum's N and P harvest indices and nutrient use efficiencies were comparable to or even higher than those of maize. Correlation analysis among soil nutrient levels, grain yield and its components, and nutrient uptake and utilization revealed that soil nutrient content was positively correlated with yield, panicle number per unit area, and grain number per panicle in both crops, as well as with maize grain weight, but negatively correlated with sorghum grain weight. In conclusion, sorghum demonstrates greater yield potential and nutrient use efficiency than maize on marginal soils. Low soil fertility reduced panicle number and grain number per panicle in both crops; although it decreased maize grain weight, it increased that of sorghum. Low fertility also prolonged the vegetative growth period of both crops, with sorghum being less affected. These findings provide a theoretical basis for rational fertilization strategies and site-specific crop selection between sorghum and maize in the same region.

Key words: sorghum, maize, soil fertility, yield and its composition, growth and development, nutrient uptake

表1

播前土壤基础养分"

年度
Year
处理
Treatment
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
有效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
2022 CK 14.23 0.71 3.48 147.00
PK 14.76 0.73 7.20 145.97
NK 15.89 0.79 4.10 150.32
NP 15.58 0.78 5.47 131.14
NPK 15.30 0.81 5.03 157.22
MS 30.07 1.81 62.68 540.04
NPKMS 30.91 1.94 67.27 595.04
2023 CK 15.15 0.68 3.65 139.32
PK 15.74 0.68 10.74 142.32
NK 15.03 0.71 4.81 144.48
NP 14.65 0.70 6.63 140.15
NPK 17.00 0.77 7.48 153.15
MS 33.24 1.83 72.85 504.15
NPKMS 31.00 1.86 76.35 571.32

表2

高粱、玉米产量及产量构成因素比较"

年份
Year
处理
Treatment
产量
Yield
(t hm-2)
穗数
Number of panicle
(×104 hm-2)
穗粒数
Grain number
per panicle
单粒重
Weight per
grain
收获指数
HI
高粱
Sorghum
玉米
Maize
高粱
Sorghum
玉米
Maize
高粱
Sorghum
玉米
Maize
高粱
Sorghum (mg)
玉米
Maize (g)
高粱
Sorghum
玉米
Maize
2022 CK 4.59±
0.07 d*
3.84±
0.19 d
11.32±
0.35 b*
5.68±
0.44 cd
1255.48±
130.00 e*
260.83±
6.24 d
29.25±
0.05 a*
0.26±
0.00 c
0.41±
0.01 c*
0.49±
0.02 d
PK 4.86±
0.12 d*
4.15±
0.08 d
12.03±
0.20 ab*
5.33±
0.12 d
1307.62±
69.76 e*
300.20±
30.49 d
29.58±
0.20 a*
0.26±
0.01 c
0.45±
0.02 b*
0.55±
0.01 cd
NK 7.87±
0.20 c
7.31±
0.10 c
12.15±
0.68 ab*
5.99±
0.19 bc
2395.38±
36.94 d*
372.30±
32.12 c
26.22±
0.38 d*
0.31±
0.01 a
0.48±
0.01 ab*
0.59±
0.02 c
NP 9.24±
0.08 b*
10.19±
0.15 b
12.42±
0.54 a*
6.09±
0.23 abc
2835.33±
58.33 bc*
561.44±
15.69 b
26.26±
0.11 d*
0.30±
0.00 ab
0.48±
0.01 ab*
0.64±
0.02 ab
NPK 9.11±
0.15 b*
10.64±
0.08 b
12.52±
0.21 a*
5.84±
0.07 bc
2622.54±
65.90 c*
633.99±
10.10 a
28.64±
0.06 b*
0.29±
0.00 b
0.47±
0.01 ab*
0.64±
0.03 a
MS 9.97±
0.05 a*
12.66±
0.45 a
12.61±
0.75 a*
6.00±
0.31 ab
3031.23±
11.71 ab*
674.34±
19.40 a
27.32±
0.10 c*
0.30±
0.00 ab
0.49±
0.01 a*
0.55±
0.01 c
NPKMS 9.22±
0.01 b*
13.11±
0.08 a
12.49±
0.22 a*
6.00±
0.02 a
3175.98±
66.08 a*
664.27±
3.93 a
25.64±
0.08 d*
0.30±
0.00 ab
0.47±
0.01 ab*
0.58±
0.02 bc
2023 CK 4.15±
0.05 d*
3.59±
0.14 d
10.92±
0.05 c*
4.79±
0.15 d
1149.07±
11.55 c*
240.23±
7.93 c
28.72±
0.09 a*
0.27±
0.00 b
0.45±
0.03 a*
0.50±
0.01 d
PK 4.76±
0.16 d*
3.61±
0.07 d
11.05±
0.14 c*
5.05±
0.14 cd
1288.18±
51.33 c*
222.89±
4.92 c
28.95±
0.53 a*
0.28±
0.01 b
0.45±
0.03 a*
0.51±
0.01 d
NK 5.76±
0.14 c*
10.61±
0.24 c
10.89±
0.02 c*
5.11±
0.07 cd
1925.80±
21.78 b*
530.33±
7.70 b
23.83±
0.33b c*
0.35±
0.01 a
0.49±
0.00 a*
0.64±
0.00 a
NP 7.92±
0.31 b*
12.08±
0.07 b
10.86±
0.02 c*
5.55±
0.09 ab
2765.94±
75.74 a*
620.97±
18.97 a
22.81±
0.32 c*
0.33±
0.01 a
0.49±
0.02 a*
0.63±
0.00 ab
NPK 8.88±
0.56 a*
12.47±
0.04 b
11.10±
0.07 c*
5.24±
0.12 bc
2755.45±
60.21 a*
583.84±
16.73 a
24.48±
0.81 b*
0.34±
0.01 a
0.51±
0.01 a*
0.62±
0.01 b
MS 9.64±
0.16 a*
13.43±
0.20 a
11.58±
0.04 b*
5.50±
0.10 ab
2897.10±
17.66 a*
639.68±
15.41 a
24.90±
0.28 b*
0.34±
0.01 a
0.51±
0.00 a*
0.60±
0.00 c
NPKMS 9.63±
0.21 a*
13.42±
0.09 a
12.39±
0.20 a*
5.61±
0.08 a
2965.97±
80.29 a*
621.79±
25.31 a
22.68±
0.12 c*
0.34±
0.01 a
0.49±
0.01 a*
0.62±
0.00 b
双因素方差分析Two-way ANOVA analysis
处理Treatment (T) ** ** * ** ** ** ** ** ** **
年份Year (Y) * ns ** ** ns ns ** ** * *
处理×年份T×Y ** ** ** ** ** ** ** ** ** **

图1

土壤肥力对高粱和玉米生长发育影响的比较 处理同表1。"

图2

土壤肥力对高粱和玉米生长影响的比较 处理同表1。VE: 出苗; V4: 四叶期; PM: 生理成熟期; LAI: 叶面积指数; P值和ns分别代表高粱与玉米同一性状显著相关或不相关; 图中的短划线表示1︰1关系。"

图3

土壤肥力对高粱和玉米地上部氮磷钾累积量的影响 处理同表1。V4: 四叶期; PM: 生理成熟期; *表示同一施肥处理下高粱与玉米氮(磷、钾)累积量在P > 0.05水平差异显著。"

表3

高粱和玉米氮、磷及钾养分收获指数比较"

处理
Treatments
N P K
高粱Sorghum 玉米Maize 高粱Sorghum 玉米Maize 高粱Sorghum 玉米Maize
CK 0.66±0.01 a 0.70±0.02 a 0.72±0.01 a* 0.66±0.01 c 0.14±0.01 b* 0.21±0.01 b
PK 0.64±0.01 ab* 0.72±0.02 a 0.62±0.01 bc* 0.54±0.01 d 0.12±0.00 cd* 0.19±0.01 bc
NK 0.55±0.03 c* 0.70±0.02 a 0.65±0.02 abc* 0.78±0.01 b 0.11±0.00 d* 0.22±0.01 b
NP 0.60±0.02 bc* 0.68±0.02 a 0.67±0.02 a* 0.77±0.02 b 0.18±0.01 a* 0.28±0.01 a
NPK 0.56±0.01 c* 0.70±0.02 a 0.65±0.01 abc* 0.81±0.02 b 0.14±0.00 b* 0.26±0.01 a
MS 0.59±0.02 c* 0.70±0.01 a 0.69±0.01 ab* 0.82±0.01 b 0.13±0.01 bc* 0.20±0.01 bc
NPKMS 0.56±0.01 c* 0.68±0.01 a 0.69±0.02 ab* 0.88±0.01 a 0.12±0.00 cd* 0.17±0.00 c

表4

高粱和玉米氮、磷及钾利用效率比较"

处理
Treatment
N P K
高粱Sorghum 玉米Maize 高粱Sorghum 玉米Maize 高粱Sorghum 玉米Maize
CK 86.45±2.26 a 85.54±0.26 a 380.18±6.70 ab* 338.86±4.93 d 42.94±1.73 b* 67.49±4.58 c
PK 87.44±1.60 a 84.85±5.67 a 263.00±1.57 cd 261.01±12.50 e 31.19±0.16 c* 58.04±2.06 c
NK 45.66±2.83 b* 63.36±1.33 b 434.69±35.56 a* 589.60±17.99 a 31.25±1.03 c* 82.93±4.05 b
NP 48.95±2.85 b 57.37±1.59 b 313.56±12.53 bcd* 519.43±4.91 b 51.02±1.97 a* 96.62±4.59 a
NPK 49.18±4.03 b 63.33±3.38 b 347.65±36.50 bc 443.74±6.66 c 42.71±1.17 b* 99.93±1.20 a
MS 47.44±3.00 b* 60.02±2.93 b 252.15±14.67 d* 366.00±8.41 d 34.05±1.80 c* 65.50±2.51 c
NPKMS 43.33±1.88 b* 56.12±1.75 b 262.63±14.73 cd* 412.45±13.58 c 31.55±0.21 c* 60.84±0.35 c

图4

土壤肥力、产量及其构成、养分吸收及利用效率的相关性分析 OM: 土壤有机质含量; TN: 土壤全氮含量; AP: 土壤速效磷含量; AK: 土壤有效钾含量; Y: 产量; NP: 单位面积穗数; GNPP: 穗粒数; WPG: 单粒重; HI: 收获指数; V4NA: 四叶期氮累积量; V4PA: 四叶期磷累积量; V4KA: 四叶期钾累积量; ANA: 花期氮累积量; APA: 花期磷累积量; AKA: 花期钾累积量; PMNA: 生理成熟期氮累积量; PMPA: 生理成熟期磷累积量; PMKA: 生理成熟期钾累积量; NUE: N利用效率; PUE: P利用效率; KUE: K利用效率。**和*分别表示在0.01和0.05水平上具有显著的相关关系。"

图5

高粱、玉米产量比较 黑色实线表示2年数据的相关性拟合(y (高粱产量)=2.86+0.50x (玉米产量); R2 = 0.80); 黑色虚线表示1:1的关系。"

[1] 中华人民共和国农业农村部. 2019年全国耕地质量等级情况公报. 中国农业综合开发, 2020, (6): 6-12.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. 2019 national bulletin on cultivated land quality grades. Agric Comprehens Dev China, 2020, (6): 6-12 (in Chinese).
[2] 曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张家宝, 等. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 中国科学院院刊, 2021, 36: 336-348.
Cao X F, Sun B, Chen H B, Zhou J M, Song X W, Liu X J, Deng X D, Li X J, Zhao Y G, Zhang J B, et al. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bull Chin Acad Sci, 2021, 36: 336-348 (in Chinese with English abstract).
[3] Swigonová Z, Lai J S, Ma J X, Ramakrishna W, Llaca V, Bennetzen J L, Messing J. Close split of sorghum and maize genome progenitors. Genome Res, 2004, 14: 1916-1923.
doi: 10.1101/gr.2332504 pmid: 15466289
[4] Sarr P S, Ando Y, Nakamura S, Deshpande S, Subbarao G V. Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and Archaea and determines the level of nitrification. Biol Fert Soils, 2020, 56: 145-166.
[5] Zakir H A K M, Subbarao G V, Pearse S J, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol, 2008, 180: 442-451.
doi: 10.1111/j.1469-8137.2008.02576.x pmid: 18657214
[6] Leon A, Nedumaran S. Estimating the effect of biological nitrification inhibition-enabled sorghum on nitrogen fertilizer consumption, life cycle GHG emissions, farmer's benefit and fertilizer subsidy from Indian sorghum production. Sci Total Environ, 2024, 957: 177385.
[7] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景. 土壤学报, 2021, 58: 545-557.
Lu Y F, Shi W M. Progress in research and agricultural application prospect of biological nitrification inhibitors. Acta Pedol Sin, 2021, 58: 545-557 (in Chinese with English abstract).
[8] Coskun D, Britto D T, Shi W M, Kronzucker H J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 2017, 3: 17074.
doi: 10.1038/nplants.2017.74 pmid: 28585561
[9] Negri L, Bosi S, Fakaros A, Ventura F, Magagnoli S, Masetti A, Lami F, Oliveti G, Poggi G M, Bertinazzi L, et al. Millets and sorghum as promising alternatives to maize for enhancing climate change adaptation strategies in the Mediterranean Basin. Field Crops Res, 2024, 318: 109563.
[10] Assefa Y, Roozeboom K L, Thompson C, Schlegel A, Stone L, Lingnfelser J E. Corn and Grain Sorghum Comparison:All Things Considered. New York: Academic Press, 2014. pp 72-84.
[11] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46: 290-299.
doi: 10.3724/SP.J.1006.2020.93027
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020, 46: 290-299 (in Chinese with English abstract).
[12] 张帅, 张硕, 王劲松, 董二伟, 刘秋霞, 白文斌, 王媛, 蔡霞, 黄晓磊, 焦晓燕. 基于叶面积指数的高粱、玉米临界氮浓度稀释曲线模型构建与比较研究. 中国农业大学学报, 2025, 30(6): 57-69.
Zhang S, Zhang S, Wang J S, Dong E W, Liu Q X, Bai W B, Wang Y, Cai X, Huang X L, Jiao X Y. Construction and comparison of the critical nitrogen dilution curves model of sorghum and maize based on leaf area index. J China Agric Univ, 2025, 30(6): 57-69 (in Chinese with English abstract).
[13] Kunrath T R, Lemaire G, Teixeira E, Brown H E, Ciampitti I A, Sadras V O. Allometric relationships between nitrogen uptake and transpiration to untangle interactions between nitrogen supply and drought in maize and Sorghum. Eur J Agron, 2020, 120: 126145.
[14] Parra G, Borrás L, Gambin B L. Maize long-term genetic progress explains current dominance over Sorghum in Argentina. Eur J Agron, 2020, 119: 126122.
[15] Parra G, Borrás L, Gambin B L. Crop attributes explaining current grain yield dominance of maize over Sorghum. Field Crops Res, 2022, 275: 108346.
[16] Liben F M, Adisu T, Atnafu O, Bekele I, Berhe H, Wortmann C S. Maize and Sorghum nutrient response functions for Ethiopia. Nutr Cycl Agroecosyst, 2020, 117: 401-410.
[17] Baye W, Xie Q, Xie P. Genetic architecture of grain yield-related traits in Sorghum and maize. Int J Mol Sci, 2022, 23: 2405.
[18] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
[19] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. pp 1242-1243.
National Soil Census Office. China Soil. Beijing: China Agriculture Press, 1998. pp 1242-1243 (in Chinese).
[20] Singh D, Sharma J, Singh S P, Sadawarti M J, Kushwah N, Chouhan S, Parihar C, Chauhan A P. Physiological parameters and quality of potato under different planting dates. J Exp Agric Int, 2023, 45: 51-58.
[21] 王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52: 4166-4176.
doi: 10.3864/j.issn.0578-1752.2019.22.020
Wang J S, Dong E W, Wu A L, Bai W B, Wang Y, Jiao X Y. Responses of fertilization on Sorghum grain yield, quality and nutrient utilization to soil fertility. Sci Agric Sin, 2019, 52: 4166-4176 (in Chinese with English abstract).
[22] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42: 2342-2348.
doi: 10.3864/j.issn.0578-1752.2009.07.011
Shan L, Xu B C. Discussion on drought resistance of Sorghum and its status in agriculture in arid and semiarid regions. Sci Agric Sin, 2009, 42: 2342-2348 (in Chinese with English abstract).
[23] Stone L R, Schlegel A J, Gwin R E, Khan A H. Response of corn, grain Sorghum, and sunflower to irrigation in the high plains of Kansas. Agric Water Manag, 1996, 30: 251-259.
[24] Norwood C A, Currie R S. Dryland corn vs. grain Sorghum in Western Kansas. J Prod Agric, 1997, 10: 152-157.
[25] Farré I, Faci J M. Comparative response of maize (Zea mays L.) and Sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a mediterranean environment. Agric Water Manag, 2006, 83: 135-143.
[26] Assefa Y, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Smith S, Ciampitti I A. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci Rep, 2018, 8: 4937.
doi: 10.1038/s41598-018-23362-x pmid: 29563534
[27] Mueller S M, Messina C D, Vyn T J. Simultaneous gains in grain yield and nitrogen efficiency over 70 years of maize genetic improvement. Sci Rep, 2019, 9: 9095.
doi: 10.1038/s41598-019-45485-5 pmid: 31235885
[28] Wang L Q, Ma D L, Liu H Y, Hu S P, Yu X F, Gao J L. Soil fertility differences due to tillage methods modulate maize yield formation at different planting densities. Sci Rep, 2025, 15: 2437.
[29] 杨文辉, 罗灏程, 董二伟, 王劲松, 王媛, 刘秋霞, 黄晓磊, 焦晓燕. 长期不同施肥和深翻对玉米高粱轮作体系作物钾利用及土壤钾形态的影响. 中国农业科学, 2024, 57: 2390-2403.
doi: 10.3864/j.issn.0578-1752.2024.12.010
Yang W H, Luo H C, Dong E W, Wang J S, Wang Y, Liu Q X, Huang X L, Jiao X Y. Effects of long-term fertilization and deep plough on crop potassium utilization and soil potassium forms in maize-sorghum rotation system. Sci Agric Sin, 2024, 57: 2390-2403 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.12.010
[30] Borrás L, Slafer G A, Otegui M E. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res, 2004, 86: 131-146.
[31] 刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应. 作物学报, 2023, 49: 2766-2776.
Liu Q X, Dong E W, Huang X L, Wang J S, Wang Y, Jiao X Y. Response of Sorghum grain yield and quality to nitrogen application in different ecozones. Acta Agron Sin, 2023, 49: 2766-2776 (in Chinese with English abstract).
[32] van Oosterom E J, Hammer G L. Determination of grain number in Sorghum. Field Crops Res, 2008, 108: 259-268.
[33] Moises C, Andrade F H, Monzon J P, Reussi Calvo N I, Cerrudo A. Nitrogen deficiency in maize fields of the southern pampas does not affect kernel number but reduces weight per kernel. Field Crops Res, 2024, 312: 109394.
[34] Adotey R E, Patrignani A, Bergkamp B, Kluitenberg G, Vara Prasad P V, Krishna Jagadish S V. Water-deficit stress alters intra-panicle grain number in Sorghum. Crop Sci, 2021, 61: 2680-2695.
[35] 张艳慧, 董二伟, 王劲松, 武爱莲, 王媛, 刘秋霞, 姜艳喜, 焦晓燕. 不同株高类型杂交高粱产量、养分吸收及品质对氮肥的响应. 植物营养与肥料学报, 2023, 29: 68-80.
Zhang Y H, Dong E W, Wang J S, Wu A L, Wang Y, Liu Q X, Jiang Y X, Jiao X Y. Responses of yield, nutrient uptake, and quality of hybrid Sorghum varieties with different shoot heights to nitrogen fertilizer in China. J Plant Nutr Fert, 2023, 29: 68-80 (in Chinese with English abstract).
[36] Gambín B L, Borrás L. Plasticity of sorghum kernel weight to increased assimilate availability. Field Crops Res, 2007, 100: 272-284.
[37] Wu Y Q, Liu J, Zhao L, Wu H, Zhu Y M, Ahmad I, Zhou G S. Abiotic stress responses in crop plants: a multi-scale approach. J Integr Agric, Published online [2024-09-11], https://doi.org/10.1016/j.jia.2024.09.003.
[38] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48: 2366-2376.
doi: 10.3724/SP.J.1006.2022.13056
Zhang Z B, Qu X Y, Yu N N, Ren B C, Liu P, Zhao B, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agron Sin, 2022, 48: 2366-2376 (in Chinese with English abstract).
[39] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响. 作物学报, 2023, 49: 1968-1978.
doi: 10.3724/SP.J.1006.2023.24152
Wang Y, Wang J S, Dong E W, Liu Q X, Wu A L, Jiao X Y. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets. Acta Agron Sin, 2023, 49: 1968-1978 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24152
[40] McCabe C P, Burke J I. Impact of varying N fertiliser rate and timing on yield formation and grain filling in winter and spring- sown oats. Eur J Agron, 2022, 139: 126550.
[41] 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响. 作物学报, 2023, 49: 845-855.
doi: 10.3724/SP.J.1006.2023.24092
Wang J S, Bai G, Zhang Y H, Shen T Y, Dong E W, Jiao X Y. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum. Acta Agron Sin, 2023, 49: 845-855 (in Chinese with English abstract).
[42] 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求. 中国农业科学, 2022, 55: 680-691.
doi: 10.3864/j.issn.0578-1752.2022.04.005
Huang Z F, Li L L, Hou L Y, Gao S, Ming B, Xie R Z, Hou P, Wang K R, Xue J, Li S K. Accumulated temperature requirement for field stalk dehydration after maize physiological maturity in different planting regions. Sci Agric Sin, 2022, 55: 680-691 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.04.005
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[5] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[6] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[9] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[12] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[13] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[14] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[15] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!