欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 831-837.doi: 10.3724/SP.J.1006.2015.00831

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位

谭炎宁1,2,**,孙学武1,**,袁定阳1,孙志忠1,余东1,何强1,段美娟1,*,邓华凤1,2,*,袁隆平1,2,*   

  1. 1 湖南杂交水稻研究中心杂交水稻国家重点实验室,湖南长沙410125;2 湖南农业大学农学院,湖南长沙410128
  • 收稿日期:2015-01-27 修回日期:2015-04-02 出版日期:2015-06-12 网络出版日期:2015-04-17
  • 基金资助:

    本研究由国家自然科学基金项目(31301292)和国家转基因生物新品种培育重大专项(2014ZX08001-004)资助。

Identification and Fine Mapping of Green-Revertible Chlorina Gene grc2 in Rice (Oryza sativa L.)

TAN Yan-Ning1,2,**,SUN Xue-Wu1,**,YUAN Ding-Yang1,SUN Zhi-Zhong1,YU Dong1,HE Qiang1,DUAN Mei-Juan1,*,DENG Hua-Feng1,2,*,YUAN Long-Ping1,2,*   

  1. 1 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; 2 College of Agronomy, Hunan Agricultural University, Changsha 410128, China
  • Received:2015-01-27 Revised:2015-04-02 Published:2015-06-12 Published online:2015-04-17

摘要:

转绿型叶色突变体是研究植物叶绿体分化与发育的基础材料grc2是利用60Co-γ射线诱变籼型三系保持系T98B后获得的单叶独立转绿型黄化突变体。grc2植株上任一叶片刚抽出时为黄色,在生长10 d左右后变绿,具有单叶不依赖于植株特定发育阶段而独立转绿的特性。与野生型T98B相比,grc2黄化叶片的总叶绿素和叶绿素b含量显著降低,叶绿体滞留在黄化质体阶段,表明grc2可能在叶片早期发育中起关键作用。遗传分析表明,grc2受一对隐性核基因独立控制;利用源于grc2/NipponbareF2群体的960个突变单株,将grc2基因定位在STS标记S254S258之间约31 kb的范围内,该区域含有5个未报道过的注释基因这些结果为grc2的克隆及功能研究提供了重要信息。

关键词: 水稻, 单叶独立转绿型黄化突变体, 叶绿体分化与发育, 基因精细定位

Abstract:

Green revertible leaf-color mutants are basical materials for studying the mechanism of chloroplast differentiation and development. We have obtained a green-revertible chlorina mutant named grc2 with every leaf greening independently, from an indica maintainer line T98B treated by 60Co-γ radiation. Each leaf of grc2 is initially chlorotic, and then turns green after growing about 10 days. The mutant grc2 showed a new pattern of virescence which refreshed green regardless of its plant growth stage. Compared with the wild type T98B, the total chlorophyll and chlorophyll b content reduced significantly in the yellowish leaves of grc2 and chloroplast remained in the etioplast stage, suggesting that grc2 would probably be an essential gene functioning in the development of young leaves. Genetic analysis revealed that, grc2 was controlled by a single recessive nuclear gene. The gene of grc2 was fine mapped between STS markers S254 and S258 with a physical interval of 31 kb on the short arm of chromosome 6, by using 960 F2 plants with mutant phenotype from a cross between grc2 and Nipponbare. This region contained five annotated genes that had not published. These results provides important information for studying in gene cloning and gene function of grc2.

Key words: Rice (Oryza sativa L.), Green-revertible chlorina, Chloroplast differentiation and development, Gene fine mapping

[1]Awan A M, Konzak D F, Rutger J N. Mutagenic effect of sodium azide in rice. Crop Sci, 1980, 20: 663–668

[2]Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem, 1996, 237: 323–243

[3]Keegstra K, Cline K. Protein import and routing systems of chloroplasts. Plant Cell, 1999, 11: 557–570

[4]沈圣泉, 舒庆尧, 吴殿星, 陈善福, 夏英武. 白化转绿型水稻三系不育系白丰A的选育. 杂交水稻, 2005, 20(5): 10–11

Shen S Q, Shu Q Y, Wu D X, Chen S F, Xia Y W. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker. Hybrid Rice, 2005, 20(5): 10–11 (in Chinese with English abstract)

[5]贺治洲, 尹明, 谢振宇, 王悦, 沈建凯, 李莉萍. 水稻新型黄化转绿叶色突变体的遗传分析与育种利用. 热带作物学报, 2013, 34(11): 2145–2149

He Z Z, Yin M, Xie Z Y, Wang Y, Shen J K, Li L P. Genetic analysis and breeding application of a novel rice mutant with virescent yellow leaves. Chin J Trop Crops, 2013, 34: 2145–2149 (in Chinese with English abstract)

[6]崔海瑞, 夏英武, 高明尉. 温度对水稻突变体W1叶色及叶绿素生物合成的影响. 核农学报, 2001, 15: 269–273

Cui H R, Xia Y W, Gao M W. Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W1. Acta Agric Nucl Sin, 2001, 15: 269–273 (in Chinese with English abstract)

[7]舒庆尧, 刘贵付, 夏英武. 温敏水稻叶色突变体的研究. 核农学报, 1996, 10: 6–10

Shu Q Y, Liu G F, Xia Y W. Temperature-sensitive leaf color mutation in rice (Oryza sativa L.). Acta Agric Nucl Sin, 1996, 10: 6–10 (in Chinese with English abstract)

[8]吴殿星, 舒庆尧, 夏英武, 郑涛, 刘贵付. 一个新的水稻转绿型白化突变系W25的叶色特征及遗传. 浙江农业学报, 1996, 8: 372–374

Wu D X, Shu Q Y, Xia Y W, Zheng T, Liu G F. Leaf color character and genetics of a new greenable albino mutation line W25 of rice (Oryza sativa). Acta Agric Zhejiangensis, 1996, 8: 372–374 (in Chinese with English abstract)

[9]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238

[10]郭涛, 黄永相, 罗文龙, 黄宣, 王慧, 陈志强, 刘永柱. 水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析. 作物学报, 2013, 39: 2123–2134

Guo T, Huang Y X, Luo W L, Huang X, Wang H, Chen Z Q, Liu Y Z. Gene differential expression of a green-revertible albino and high-tillering dwarf mutant hfa-1 by using rice microarray. Acta Agron Sin, 2013, 39: 2123–2134 (in Chinese with English abstract)

[11]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401

[12]郭士伟, 王永飞, 马三梅, 李霞, 高东迎. 一个水稻叶片白化转绿叶突变体的遗传分析和精细定位. 中国水稻科学, 2011, 25: 95–98

Guo S W, Wang Y F, Ma S M, Li X, Gao D Y. Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci, 2011, 25: 95–98 (in Chinese with English abstract)

[13]Sang X C, Fang L K, Vanichpakorn Y, Ling Y H, Du P, Zhao F M, Yang Z L, He G H. Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.). Genes Genomics, 2010, 32: 123–128

[14]张向前, 李晓燕, 朱海涛, 王涛, 解新明. 水稻阶段性返白突变体的鉴定和候选基因分析. 科学通报, 2010, 55: 2296–2301

Zhang X Q, Li X Y, Zhu H T, Wang T, Xie X M. Identification and candidate gene analysis of stage green-revertible albino mutant in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 2296–2301 (in Chinese with English abstract)

[15]Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039–1050

[16]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512–527

[17]郭涛, 黄永相, 黄宣, 刘永柱, 张建国, 陈志强, 王慧. 水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆. 作物学报, 2012, 38: 1397–1406

Guo T, Huang Y X, Huang X, Liu Y Z, Zhang J G, Chen Z Q, Wang H. Map-based cloning of a green-revertible albino and high-tillering dwarf gene hw-1(t) in rice. Acta Agron Sin, 2012, 38: 1397–1406 (in Chinese with English abstract)

[18]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[19]Dong H, Fei G L, Wu C Y, Fu Q W, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880

[20]Li J Q, Wang Y H, Chai J T, Wang L H, Wang C M, Long W H, Wang D, Wang Y L, Zheng M, Peng C, Niu M, Wan J M. Green-revertible chlorina 1 (grc1) is required for the biosynthesis of chlorophyll and the early development of chloroplasts in rice. J Plant Biol, 2013, 56: 326–335

[21]Wellburn. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591–592

[22]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829

[23]王平荣, 王兵, 孙小秋, 孙昌辉, 万春美, 马晓智, 邓晓建. 水稻白化转绿基因gra75的精细定位和生理特性分析. 中国农业科学, 2013, 46: 225–232

Wang P R, Wang B, Sun X Q, Sun C H, Wan C M, Ma X Z, Deng X J. Fine mapping and physiological characteristics of a green-revertible albino gene gra75 in rice. Sci Agric Sin, 2013, 46: 225–232 (in Chinese with English abstract)

[24]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472

[25]Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol, 2005, 46: 467–473

[26]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337

[27]Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta, 2003, 216: 475–483

[28]Nott A, Jung H S, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol, 2006, 57: 739–759

[29]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906

[30]Chi W, Mao J, Li Q N, Ji D L, Zou M L, Lu C M, Zhang L X. Interaction of the pentatricopeptide-repeat protein DELAYED GREENING 1 with sigma factor SIG6 in the regulation of chloroplast gene expression in Arabidopsis cotyledons. Plant J, 2010, 64: 14–25

[31]Huang C, Yu Q B, Lü R H, Yin Q Q, Chen G Y, Xu L, Yang Z N. The reduced plastid-encoded polymerase-dependent plastid gene expression leads to the delayed greening of the Arabidopsis fln2 mutant. PLoS One, 2013, 8(9): e73092. doi: 10.1371/journal. pone 0073092

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!