Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1782-1790.doi: 10.3724/SP.J.1006.2012.01782
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Lu-Biao1,2,PAN Xiao-Biao3,ZHANG Jian2,CHEN Kai2,ZHANG Qiang2,XU Jian-Long2,*,PAN Xue-Biao1,LI Zhi-Kang2
[1]Martinez-Beltran J, Manzur C L. Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of International Salinity Forum Managing Saline Soils and Water: Science, Technology and Social Issues. Riverside Convention Center, Riverside, California, USA. 25–28 April, 2005. pp 311–314[2]Hu S-K(胡时开), Tao J-H(陶红剑), Qian Q(钱前), Guo L-B(郭龙彪). Progresses on genetics and molecular breeding for salt-tolerance in rice. Mol Plant Breed (分子植物育种), 2010, 8(4): 629–640 (in Chinese with English abstract)[3]Johnson D W, Smith S E, Dobrenz A K. Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa. Theor Appl Genet, 1992, 83: 833–838[4]Zang J-P(藏金萍), Sun Y(孙勇), Wang Y(王韵), Yang J(杨静), Li F(李芳), Zhou Y-L(周永力), Zhu L-H(朱苓华), Reys J, Fotokian M, Xu J-L(徐建龙), Li Z-K(黎志康). Dissection of genetic overlap of salt tolerance qtls at the seedling and tillering stages using backcross introgression lines in rice. Sci China, Ser C (中国科学C辑: 生命科学), 2008, 51(11): 583–591 (in Chinese)[5]Foolad M R, Chen F Q. RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet, 1999, 99: 235–243[6]Zaidem M L, Mendoza R D, Tumimbang E B. Genetic variability of salinity tolerance at different growth stages of rice. In: International Rice Research Institute. PBGB 2003 Annual Report. Las Banos, Philippines: IRRI, 2004. pp 19–20[7]Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Netherlands: Springer, 2007. pp 531–564[8]Pan X-B(潘晓飚), Huang S-J(黄善军), Chen K(陈凯), Meng L-J(孟丽君), Xu J-L(徐建龙). Selection of rice restorer lines with salinity tolerance through salt solution irrigation over whole growth stage under field conditions. Chin J Rice Sci (中国水稻科学), 2012, 26(1): 49–54 (in Chinese with English abstract)[9]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25–36[10]Yeo A R. Physiological criteria in screening and breeding. In: Yeo A R, Flowers T J, eds. Soil Mineral Stresses: Approaches to Crop Improvement. Berlin: Springer-Verlag, 1994. pp 37–57[11]Meng L-J(孟丽君), Lin X-Y(林秀云), Cui Y-R(崔彦茹), Chen K(陈凯), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Identification and screening of salt and alkaline tolerance in rice using advanced backcross introgression populations. Mol Plant Breed (分子植物育种), 2010, 8(6): 1142–1150 (in Chinese with English abstract)[12]Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Mohammadhosein F, Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerance QTL from rice germplasm using a backcrossing introgression line population. Acta Agron Sin (作物学报), 2007, 33(10): 1611−1617 (in Chinese with English abstract)[13]Tal M. Genetics of salt tolerance in higher plants: theoretical and applied considerations. Plant Soil, 1985, 89: 199–226[14]Rajanaidu N, Zakri A H. Breeding for morpho-physiological traits in crop plants. In: Zakri A H, ed. Plant Breeding and Genetic Engineering. Bangkok: SABRAO publishers, 1988. pp 116–139[15]Akbar M. Breeding saline-resistant varieties of rice. Jpn J Breed, 1973, 22: 277–284[16]Yang J(杨静), Sun Y(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974–982 (in Chinese with English abstract)[17]Andaya V C, Tai T H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet, 2006, 113: 467–475[18]Jiang L, Xun M M, Wang H K, Wan H M. QTL analysis of cold tolerance at seedling stage in rice (Oryza sativa L.) using recombination inbred lines. J Cereal Sci, 2008, 48: 173–179[19]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650[20]He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J , Zhu L H, Li Z K. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. Plant Breed, 2010, 129: 167–175[21]Zhou Z(周政), Li H(李宏), Sun Y(孙勇), Huang D-Q(黄道强), Zhu L-H(朱苓华), Lu D-C(卢德城), Li K-H(李康活), Xu J-L(徐建龙), Zhou S-C(周少川), Li Z-K(黎志康). Effect of selection for high yield, drought and salinity tolerances on yield-related traits in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(10): 1725–1735 (in Chinese with English abstract)[22]Xu J-L(徐建龙), Gao Y-M(高用明), Fu B-Y(傅彬英), Li Z-K(黎志康). Identification and screening of favorable genes from rice germplasm in backcross introgression populations. Mol Plant Breed (分子植物育种), 2005, 3(5): 619–628 (in Chinese with English abstract)[23]Ali A J, Xu J L, Ismail A M. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66–76[24]Adorada D L, Mendoza R D, Gregorio G B. Agronomic characterization of saline-tolerant elite breeding lines with multiple tolerance for abiotic stresses. In: International Rice Research Institute. PBGB 2003 Annual Report. Los Banos, the Philippines: IRRI, 2004. p 29 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|