Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 45-53.doi: 10.3724/SP.J.1006.2014.00045

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Cloning and Expression Analysis of FAD2 Gene from Three Wild Potato Species with Different levels of Freezing Tolerance

LI Fei1,2,XU Jian-Fei1,LIU Jie1,DUAN Shao-Guang1,BIAN Chun-Song1,Jiwan P. PALTA3,JIN Li-Ping1,*   

  1. 1 The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Potato in Guizhou Province, Guiyang, 550006, China; 3 Department of Horticulture, University of Wisconsin, Madison 53706, WI, USA
  • Received:2013-07-01 Revised:2013-09-16 Online:2014-01-12 Published:2013-10-22
  • Contact: 金黎平, E-mail: jinliping@caas.cn, Tel: 010-82109543

Abstract:

Using reverse transcription polymerase chain reaction (RT-PCR), three new full-length cDNAs of ω-6 desturases (FAD2) were obtained from three wild potatospecies with different levels of freezing tolerance and cold acclimation capacity, Solanum commersonii, S. acaule,and S. cardiophyllum, designated Cmm-FAD2 (GenBank accession No. KF214782), Aca-FAD2 (KF214781), and Cph-FAD2 (KF214783). Theresults of sequence analysis indicated that their nucleotide length is all 1326 bp, coding 441 amino acids. It’s detected that eight nucleotides resulted in corresponding change of amino acids among the eighteen difference nucleotides by nucleotide and protein sequences alignment of FAD2 genes from three potato species. At the amino acid residue 11 and 44, sequencesof S. commersonii and S. acaule are different from that of S. cardiophyllum. The results of secondary structure prediction indicated that there are obvious differences in alpha-helix, extend chain and random crimp of S. commersonii and S. acaule as compared with S. cardiophyllum. By protein multiple sequence alignments and phylogenetic tree analyses, the results showed that FAD2 genes from three species are highly similar to these of tomato and purslane. The results of qPCR showed that FAD2 genes expression was up-regulated in the three potato wild species, there existed significant differencein relative expression level of FAD2

Key words: Wild potato species, Frost tolerance, Cold acclimation capacity, FAD2, Gene expression

[1]Estrada R N. Breeding frost-resistant potatoes for the tropical highlands. In: Li P H, Sakai A, eds. Plant cold hardiness and freezing stress. New York: Academic Press, 1978. pp 333–341



[2]Li P H. Palta J P. Frost hardening and freezing stress in tuber bearing Solanum species. In: Li P H, Sakai A, eds. Recent advances in plant cold hardiness and freezing stress: Mechanism and crop implications. New York: Academic Press, 1978. pp 49–71



[3]李飞. 野生马铃薯植株耐冻性鉴定及耐冻机理研究. 中国农业科学院研究生院硕士学位论文, 2008.



Li F. Assessment and mechanism study for freezing tolerance in Solanum acaule seedling. MS Theses of the Graduate School of Chinese Academy of Agriculture Sciences, 2008 (in Chinese with English abstract)



[4]Steponkus P L. Role of plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol, 1984, 35: 543–584



[5]Riken A, Dill J W, Bergman D K. Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiol, 1993, 101: 31–36



[6]Steponkus P L, Uemura M, Webb M S. A contrast of the cryostability of the plasma membrane of winter rye and spring oat. In: Steponkus P L ed. Advances in Low-Temperature Biology. London: JAI Press, 1993. pp 211–312



[7]Upchurch RG. Fatty acid unsaturation, mobilization, and regulation the response of plants to stress. Biotechnol Lett, 2008, 30: 967–977



[8]Teixeira M C, Coelho N, Olsson M E, Brodelius P E, Carvalho I S, Brodelius M. Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnol Lett, 2009, 31:1089–1101



[9]Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot, 2008, 59: 2043–2056



[10]Niu B, Guo L, Zhao M, Luo T, Zhang R, Zhang F, Hou P, Zhang Y, Xu Y, Wang S, Chen F. Molecular cloning, characterization, and expression of an omega-3 fatty acid desaturase gene from Sapium sebiferum. J Biosci Bioeng, 2008, 106: 375–380



[11]Murata N, Sato N, Takahashi N, Hamazaki Y. Composition and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol, 1982, 23: 1071–1079



[12]Lemieux B, Miquel M, Somerville C, Browse J. Mutants of Arabidopsis with alterations in seed lipid fatty acid compositon. Theor Appl Genet, 1990, 80: 234–240



[13]Vega S E, Del Rio A H, Bamberg J B, Palta J P. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold accliamtion. Am J Potato Res, 2004, 81: 125–135



[14]Yin D M, Deng S Z, Zhan K H, Cui D Q. High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep, 2007, 25: 154–163



[15]Georgios B, Anastassios M, Nikos N, Polydefkis H. Spatial and temporal expressions of two distinct oleate desaturase from olive (Olea europaea L.). Plant Sci, 2005, 168: 547–555



[16]Rolletschek H, Borisjuk L, Sanchez-Garcra A, Gotor C, Romero LC, Martinez-Rivas J M, Mancha M. Temperature dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot, 2007, 58: 3171–3181



[17]Li LY, Wang X L, Gai J Y, Yu D Y. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol, 2007, 164: 1516–1526



[18]Mietkiewska E, Brost J M., Giblin E M, Francis T, Wang S, Reed D, Truksa M, Taylor D C. A Tropaeolum majus FAD2 cDNA complements the fad2 mutation in transgenic Arabidopsis plants. Plant Sci, 2006, 171:187–193



[19]崔红. 冬小麦东农冬麦1号抗寒生理特性及抗寒基因的克隆. 东北农业大学硕士学位论文, 2010



Cui H. Analysis in cold-resistant physiological characteristics and cloning genes of winter wheat dongnongdongmai1. MS Theses of Northeast Agricultural University, 2010 (in Chinese with English abstract)



[20]Van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum) tubers are sequence related to stress-responsive genes. Plant Physiol, 1994, 104: 445–452



[21]Rorat T, Grygorowicz W J, Bcrbczy P, Irzykowski W. Isolation and expression of cold specific genes in potato (Solanum sogarandinum). Plant Sci, 1998, 133: 57–67



[22]Stone J M, Palta J P, Bamberg J B, Weiss L S, Harbage J F. Inheritance of freezing resistance in tuber-bearing Solanum species : Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Genetics, 1993, 90: 7869–7873



[23]Vega S E, Del Rio A H, Jung G, Bamberg J B, Palta J P. Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcross Solanum population. Am J Potato Res, 2003, 80: 359–3691



[24]李飞, 徐建飞, 刘杰, 段绍光, 雷尊国, Palta J P, 金黎平. 冷驯化前后野生马铃薯S. acaule内参基因的筛选. 西南农业学报, 2012, 25: 1592–1595



Li F, Xu J F, Liu J, Duan S G, Lei Z G, Palta J P, Jin L P. Selection of reference genes from wild potato Solanum acaule before and after cold acclimation.   Southwest China J Agric Sci, 2012, 25: 1592–1595 (in Chinese with English abstract)



[25]Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot, 2008, 59: 2043–2056



[26]Hernandez M L, Padilla M N, Sicardo M D, Mancha M, Martinez-Rivas J M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry, 2011, 72: 178–187



[27]Matteucci M, Dangeli S, Errico S, Lamanna R, Perrotta G, Altamura M M. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. J Exp Bot, 2011, 62: 3403–3420



[28]Zhang Y M, Wang C C, Hu H H, Yang L. Cloning and expression of three fatty acid desaturase genes from cold-sensitive lima bean (Phaseolus lunatus L.). Biotechnol Lett, 2011, 33: 395–401



[29]Yang L, Ye J, Guo W D, Wang C C, Hu H T. Differences in cold tolerance and expression of two fatty acid desaturase genes in the leaves between fingered citron and its dwarf mutant. Trees, 2012, 26: 1193–1201



[30]Shi J L, Cao Y P, Fan X R, Li M, Wang Y F, Ming F. A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breed, 2012, 29:743–757



[31]周洲. 转脂肪酸去饱和酶基因PtFAD2和PtFAD3银腺杨84K的抗寒性研究. 中国林业科学研究院博士学位论文, 2007



Zhou Z. The cold tolerance of transgenic Populus alba × Populus glandulossa 84K with fatty acid desaturase genes PtFAD2 and PtFAD3 .PhD Dissertation  Chinese of Academy of Forestry, 2007 (in Chinese with English abstract)



[32]Honjoh K, Machida T, Hagisako T, Suga K, Yonekura M, Shimizu H, Ohashi N, Miyamoto T, Hatano S, Lio M. Molecular Cloning and characterization of a cDNA for low-temperature indueible cytosolic glueose 6-PhosPhate dehydrogenase gene from Chlorella vulgaris and expression of the gene in Saceharomyces cerevisiae. Plant Sei, 2007, 172: 649–658



[33]Rodriguez-Vargas S, Sanchez-Garcia A, Martinez-Rivas J M, Prieto J A, Randez-Gil F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol, 2007, 73: 110–116

[1] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[4] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[5] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[6] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[9] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[10] MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516.
[11] JIN Shu-Rong,WANG Yan-Mei,CHANG Yue,WANG Yue-Hua,LI Jia-Na,NI Yu. Activity and gene family expression of β-amylase in Brassica napus differing in harvest index [J]. Acta Agronomica Sinica, 2019, 45(8): 1279-1285.
[12] Tao FENG,Chun-Yun GUAN. Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 204-213.
[13] Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG. Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress [J]. Acta Agronomica Sinica, 2019, 45(12): 1784-1795.
[14] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[15] Tao FENG,Chun-Yun GUAN. Cloning and Characterization of Brassinazole-resistant (BnaBZR1 and BnaBES1) CDS from Brassica napus L. [J]. Acta Agronomica Sinica, 2018, 44(12): 1793-1801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!