Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (06): 1002-1010.doi: 10.3724/SP.J.1006.2014.01002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression of Sugarcane S-Adenosylmethionine Synthetase Gene ScSAM

SONG Xiu-Peng1,ZHANG Bao-Qing2,HUANG Xing2,YANG Li-Tao1,2,*,LI Yang-Rui1,2,*   

  1. 1 Agricultural College / State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; 2 Guangxi Academy of Agricultural Sciences / Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
  • Received:2013-11-17 Revised:2014-03-04 Online:2014-06-12 Published:2014-04-09
  • Contact: 杨丽涛, E-mail: liyr@gxu.edu.cn, Tel: 0771-3236407; 李杨瑞, E-mail: liyr@gxaas.net, Tel: 0771-3247689

Abstract:

The full-length sequencecDNA of ScSAM (GenBank accession number: KC172558) was cloned from sugarcane variety ROC 22 using RT-PCR combined with RACE techniques. This sequence consists of 1466 bp with an intact open reading frame of 1191 bp, encoding a polypeptide of 396 amino acids. Homology analysis showed that the deduced ScSAM protein was highly homologous to SAM proteins from different species. Phylogenetic analysis indicated that ScSAM was closely related to the SAM of sorghum. Real-time PCR results showed that the ScSAM gene constitutively expressed in plant, with different expression levels in root, stalk and leaf. The transcript of ScSAM in root was the highest among the three organs, which was 3.6 times higher than that in leaf. Furthermore, ScSAM transcription was induced by biotic (smut infection) and abiotic (low temperature, PEG and NaCl) stresses, but the expression patterns were different. Under oxidative stress (H2O2), the expression of ScSAM was inhibited. We suggested that ScSAM might participate in smut-resistant activities in sugarcane, and also play a role in sugarcane resistances to chill, drought, salt and oxidation stresses.

Key words: Sugarcane, S-Adenosylmethionine synthetase (SAM), Clone, Expression analysis

[1]李杨瑞, 杨丽涛. 20世纪90年代以来我国甘蔗产业和科技的新发展. 西南农业学报, 2009, 22: 1469–1476



Li Y R. Yang L T. New developments of sugarcane industry and technology in China since 1990s. Southwest China J Agric Sci, 2009, 22: 1469–1476 (in Chinese with English abstract)



[2]Kumar T, Uzma, Khan M R, Abbas Z, Ali G M. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol, 2014, 56: 199–209



[3]Mato J, Alvarez L, Ortiz P, Pajares M A. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Therapeutics, 1997, 73: 265–280



[4]Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci, 2004, 29: 243–249



[5]Belbahri L, Chevalier L, Bensaddek L, Gillet F, Fliniaux M A, Boerjan W, Inzé D, Thomas D, Thomasset B. Different expression of an S-adenosylmethionine synthetase gene in transgenic tobacco callus modifies alkaloid biosynthesis. Biotechnol Bioeng, 2000, 69: 11–20



[6]Grundy F J, Henkin T M. Regulation of gene expression by effectors that bind to RNA. Curr Opin Microbiol, 2004, 7: 126–131



[7]Winkler W C, Nahvi A, Sudarsan N, Barrick J E, Breaker R R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Mol Biol, 2003, 10: 701–707



[8]Kevbrin V V, Zengler K, Lysenko A M, Wiegel J. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles, 2005, 9: 391–398



[9]Foyer C H, Bloom A J, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol, 2009, 60: 455–484



[10]Espartero J, Pintor-Toro J A, Pardo J M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol, 1994, 25: 217–227



[11]Ma X L, Wang Z L, Qi Y C, Zhao Y X, Zhang H. Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress. Acta Bot Sin, 2003, 45: 1359–1365



[12]朱晶莹, 王寒玉, 张晏萌, 余爱丽. 玉米S-腺苷甲硫氨酸合成酶基因家族成员在盐胁迫条件下的差异表达. 核农学报, 2011, 25: 427–431



Zhu J Y, Wang H Y, Zhang Y M, Yu A L. Differential expression of maize S-adenosylmethionin synthetase gene family members during salt stress. J Nucl Agric Sci, 2011, 25: 427–431 (in Chinese with English abstract)



[13]Li X D, Xia B, Wang R, Xu S, Jiang Y M, Yu F B, Peng F. Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata. Mol Biol Rep, 2013, 40: 1255–1263



[14]樊金萍, 柏锡, 李勇, 纪巍, 王希, 才华, 朱延明. 野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析. 作物学报, 2008, 34: 1581–1587



Fan J P, Bo X, Li Y, Ji W, Wang X, Cai H, Zhu Y M. Cloning and function analysis of gene SAMS from Glycine soja. Acta Agron Sin, 2008, 34: 1581–1587 (in Chinese with English abstract)



[15]Santiago R, de Armas R, Fontaniella B, Vicente C, Legaz M E. Changes in soluble and cell wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur J Plant Pathol, 2009, 124: 439–450



[16]宋修鹏, 黄杏, 莫凤连, 杨丽涛, 李杨瑞, 陈保善. 甘蔗苯丙氨酸解氨酶基因(PAL)的克隆和表达分析. 中国农业科学, 2013, 46: 2856–2868



Song X P, Hang X, Mo F L, Yang L T, Li Y R, Chen B S. Cloning and expression analysis of sugarcane phenylalanin ammonia-lyase (PAL) gene. Sci Agric Sin, 2013, 46: 2856–2868 (in Chinese with English abstract)



[17]Cantoni G. The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J Am Chem Soc, 1952, 74: 2942–2943



[18]柴兴苹, 张玉秀, 谭金娟, 冯珊珊, 柴团耀. Zn胁迫下小麦S-腺苷甲硫氨酸代谢途径关键基因表达模式分析. 植物生理学报, 2013, 49: 375–384



Chai X P, Zhang Y X, Tan J J, Feng S S, Chai T Y. Analysis of expression patterns of genes participated in S-adenosylmethionine (SAM) metabolic pathway in wheat under Zn stress. Plant Physiol J, 2013, 49: 375–384 (in Chinese with English abstract)



[19]Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stresS-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712–722



[20]陈坤明, 张承烈. 干旱期间春小麦叶片多胺含量与作物抗旱性的关系. 植物生理学报, 2000, 26: 381–386



Chen K M, Zhang C L. Polyamine contents in the spring wheat leaves and their relations to drought-resistance. Plant Physiol J, 2000, 26: 381–386 (in Chinese with English abstract)



[21]鞠妍, 侯和胜. SAM合成酶基因的研究进展与应用现状. 天津农业科学, 2012, 18: 27–29



Ju Y, Hou H S. Research and application status of SAM synthase gene. Tianjin Agric Sci, 2012, 18: 27–29 (in Chinese with English abstract)



[22]周向红, 王萍. 向日葵S-腺苷甲硫氨酸合成酶基因克隆与分析. 作物杂志, 2011, 6: 10–13



Zhou X H, Wang P. Molecular cloning and bioinformatic analysis of S-adenosylmethionine synthetase gene from Helianthus annuus. Crops, 2011, 6: 10–13 (in Chinese with English abstract)



[23]孔令芳, 张吉宇, 刘志鹏, 王彦荣. 无芒隐子草SAMS1基因的克隆及干旱胁迫下的表达分析. 草业学报, 2013, 22: 268–275



Kong L F, Zhang J Y, Liu Z P, Wang Y R. Cloning of a S-adenosyl methionine synthetase gene from Cleistogenes songorica and its expression under droght stress. Acta Pratac Sin, 2013, 22: 268–275 (in Chinese with English abstract)



[24]Jennings J C, Apel-Birkhold P C, Mock N M, Baker C J, Anderson J D, Bailey B A. Induction of defense responses in tobacco by the protein Nep1 from Fusarium oxysporum. Plant Sci, 2001, 161: 891–899



[25]Kodaki T, Tsuji S, Otani N, Yamamoto D, Rao K S, Watanabe S, Tsukatsune M, Makino K. Differential transcriptional regulation of two distinct S-adenosylmethionine synthetase genes (SAM1 and SAM2) of Saccharomyces cerevisiae. Nucl Acids Res, 2003, 3(suppl): 303–304



[26]Mathur M, Sharma N, Sachar R. Differential regulation of S-adenosylmethionine synthetase isozymes by gibberellic acid in dwarf pea epicotyls. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol, 1993, 1162: 283–290



[27]Hazarika P, Rajam M V. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants, 2011, 17: 115–128



[28]Yue C W, Xiao J, Ling X, Zeng N. Effect of low temperature stress on sweet potato S-adenosyl methionine synthetase gene expression. Agric Sci Technol, 2008, 9: 11–14



[29]陈锐, 陈亮, 王士强, 胡银岗. 水分胁迫下小麦S-腺苷甲硫氨酸合成酶基因的半定量表达模式分析. 麦类作物学报, 2009, 29: 954–958



Chen R, Chen L, Wang S Q, Hu Y G. Expression analysis of wheat S-adenosylmethionine synthetase gene during water stress and re-watering by semi-quantitative RT-PCR. J Triticeae Crops, 2009, 29: 954–958 (in Chinese with English abstract)



[30]林凡云, 王士强, 胡银岗, 何蓓如. 糜子SAMS基因的克隆及其在干旱复水中的表达模式分析. 作物学报, 2008, 34: 777–782



Lin F Y, Wang S Q, Hu Y G, He B R. Cloning of a S-adenosylmethionine synthetase gene from broomcorn millet (Panicum miliaceum L.) and its expression during drought and re-watering. Acta Agron Sin, 2008, 34: 777–782 (in Chinese with English abstract)



[31]周凯, 宋丽艳, 叶武威, 王俊娟, 王德龙, 樊保香. 陆地棉耐盐相关基因GhSAMS的克隆及表达. 作物学报, 2011, 37: 1012–1019



Zhou K, Song L Y, Ye W W, Wang J J, Wang D L, Fan B X. Cloning and expression of GhSAMS gene related to salt-tolerance in Gossypium hirsutum L. Acta Agron Sin, 2011, 37: 1012–1019 (in Chinese with English abstract)



[32]李燕, 孙伟, 赵彦修, 张慧. 盐地碱蓬甲硫氨酸合成酶基因(SsMS)的克隆与表达分析. 山东师范大学学报(自然科学版), 2003, 18: 76–78



Li Y, Sun W, Zhao Y X, Zhang H. Isolation and characteizing of a methionine synthetase gene in Suaeda salsa under stress. J Shandong Norm Univ (Nat Sci), 2003, 18: 76–78 (in Chinese with English abstract)



[33]Sánchez-Aguayo I, Rodríguez-Galán J M, García R, Torreblanca J, Pardo J M. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220: 278–285

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[4] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[5] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[6] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[9] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[10] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[11] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[12] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[13] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[14] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[15] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!