Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 531-538.doi: 10.3724/SP.J.1006.2015.00531

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenolic Acid Synthesis of Allelopathic Rice Regulated by OsMYB and Its Weed Inhibition

SHEN Li-Hua1,2,LI Bi-Liang1,REN Yong-Jie1,LI Cheng-Xun1,ZHONG Yong-Jia2,FANG Chang-Xun1,2,LIN Wen-Xiong1,2,*   

  1. 1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Institute of Agro-ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2014-11-18 Revised:2015-02-06 Online:2015-04-12 Published:2015-03-03

Abstract:

Regulation of gene expression is a vital process in the formation of rice allelopathy. In this study, allelopathic rice PI312777 (Oryza sativa L.) was modified by RNA interference (RNAi) and overexpression(OE) technologies to inhibit or enhance gene expression of OsMYB (CT829537) in PI312777 respectively. The results showed that up-regulation of phenolic synthesis related genes was found in CT829537-OE transgenic PI312777 co-cultured with barnyardgrass (BYG), compared with that in wild type. However, the reverse was true in the CT829537-RNAi transgenic PI312777. Up-regulation of the gene expression in CT829537-OE transgenic PI312777 increased phenolic acids contents in rice root and root exudates, which led to enhance allelopathic inhibition on barnyardgrass. In contrast, decreases of phenolic acids contents and weed inhibition were found in CT829537-RNAi transgenic PI312777. These results implied that CT829537 is responsible for regulating phenolic synthesis in allelopathic rice PI312777 and then enhances allelopathic inhibition on weeds.

Key words: Rice, Allelopathy, Transcription factor, Phenolic acid, Gene expression regulation

[1]Olofsdotter M, Navarez D, Rebulanan M, Streibig J C. Weed-suppressing rice cultivars: does allelopathy play a role. Weed Res, 1999, 39: 441–454



[2]Chou C H, Chang F J, Oka H I. Allelopathic potentials of wild rice, Orzyaperennis. Taiwania, 1991, 36: 201–210



[3]Chou C H. Adaptive autointoxication mechanisms of Oryza sativa. In: Olofsdotter M, ed. Allelopathy in Rice. Los Banzos, Philippines: IRRI, 1996. pp 25–27



[4]Fujii Y. The allelopathic effect of some rice varities. In: Proceedings of the International Seminar Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia. Tsukuba, Japan, 1992. pp 160–165



[5]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[6]Dilday R H, Yan W G, Moldenhauer K A K, Gravois K A. Allelopathic activity in rice for controlling major aquatic weeds. In: Olofsdotter M, ed. Proceedings of Workshop on Allelopathy in Rice. Manila, Philippines: IRRI, 1998. pp 7–26



[7]Dilday R H, Nastasi P, Smith R J Jr. Allelopathic observation in rice (Oryza sativa L.) to ducksalad (Heterantheralimosa). Proc Arkansas Acad Sci, 1989, 43: 21–22



[8]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[9]Dilday R H, Mattice J D, Moldenhauer K A. An overview of rice allelopathy in the USA. In: Kim K U, Shin D H, eds. Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 15–26



[10]Jensen L B, Courtois B, Shin L S, Li Z K, Olofsdotter M, Mauleon R P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J, 2001, 93: 21–26



[11]Ebana K, Yan W G, Dilday R, Namai H, Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water soluble extracts. Breed Sci, 2001, 51: 47–51



[12]Xiong J, Jia X L, Deng J Y. Analysis of epistatic effect and QTL interactions with environment for allelopathy in rice (Oryza sativa L.). Allelopathy J, 2007, 20: 259–268



[13]Lee S B, Seo K I, Koo J H, Hur H S, Shin J C. QTLs and molecular markers associated with rice allelopathy. In: Haper J D I, An M, Kent J H, eds. Proceedings of the Fourth World Congresson Allelopathy “Establishing the scientific base”. Australia: Charles Sturt Universit, Wagga Wagga, NSW, 2005. pp 505–507



[14]Zeng D L, Qian Q, Teng S, Fujimoto H, Kunihifo Y, Zhu L H. Genetic analysis of rice allelopathy. Chin Sci Bull, 2003, 48: 265–268



[15]王海斌, 何海斌, 熊君, 邱龙, 方长旬,曾聪明, 严琳, 林文雄. 低钾胁迫对水稻(Oryza sativa L.)化感潜力变化的影响. 生态学报, 2008, 28: 6219–6227



Wang H B, He H B, Xiong J, Qiu L, Fang C X, Zeng C M, Yan L, Lin W X. Effects of potassium stress on allelopathic of rice (Oryza sativa L.). Acta Ecol Sin, 2008, 28: 6219–6227 (in Chinese with English abstract)



[16]王海斌, 何海斌, 叶陈英, 邱龙, 方长旬, 林文雄. 不同化感潜力水稻秧苗响应低钾的光合生理特性. 中国生态农业学报, 2008, 16: 1474–1477



Wang H B, He H B, Ye C Y, Qiu L, Fang C X, Lin W X. Photosynthetic physiology of different allelopathic rice accessions at seedling stage under phtossium stress. Chin J Eco-Agric, 2008, 16: 1474–1477 (in Chinese with English abstract)



[17]王海斌, 何海斌, 曾聪明, 吴良展, 沈荔花, 熊君, 林瑞余, 林文雄. 低磷胁迫下不同化感潜力水稻秧苗生长的分子生理特性. 应用与环境生物学报, 2008, 14: 593–598



Wang H B, He H B, Zeng C M, Wu L Z, Shen L H, Xiong J, Lin R Y, Lin W X. Molecular physiological properties of different rice accessions mediated by different phosphorus supplies at seedling stage. Chin J Appl Environ Biol, 2008, 14: 593–598 (in Chinese with English abstract)



[18]Mattice J, Lavy T, Sdulman B, Dilday R H. Searching for allelochemicals in rice that control ducksalad. In: Olofsdotter M ed. Proceedings of Workshop on Allelopathy in Rice. Manila, Philippines: IRRI, 1998. pp81–98



[19]Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and nonallelopathic rice root exudates. J Chem Ecol, 2004, 30: 1647–1662



[20]Macias F A, Chinchilla N, Varela R M, Molinllo J M G. Bioactive steroids from Oryza sativa L. Steroids, 2006, 71: 603–608



[21]He H B, Wang H B, Fang, C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One, 2012, 7(5): e37201



[22]Kato N H. Barnyard grass-induced rice allelopathy and momilactone B. Plant Physiol, 2011, 168: 1016–1020



[23]Fang C X, He H B, Wang Q S, Qiu L, Wang H B, Zhuang Y E, Xiong J, Lin W X. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul, 2010, 61: 277–286



[24]Fang C X, Zhuang Y E, Xu T C, Li Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice henylalanine ammonia-lyase gene expression. J Chem Ecol, 2013, 39: 204–212



[25]Putu S, Tsutomu S, Hidenari S, Masahiro N, Masayuki N, Minco K. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng, 2005, 100: 391–397



[26]Fang C X, Wang Q S, Yu Y, Lin Q M, Zhang H L, Wu X C, Chen T, Lin W X. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul, 2011, 65: 1–10



[27]熊君, 王海斌, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 不同氮素供应下水稻酚类物质代谢关键酶基因差异表达. 植物生理与分子生物学学报, 2007, 33: 387–394



Xiong J, Wang H B, Fang C X, Qiu L, Wu W X, He H B, Lin W X. The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol, 2007, 33: 387–394 (in Chinese with English abstract)



[28]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408



[29]庄月娥. 水稻抑草作用关键基因的分子生态机制研究. 福建农林大学硕士学位论文, 福建福州, 2011



Zhuang Y E. Molecular Ecological Mechanism of the Key Gene for Weed-suppression in Allelopathic Rice. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, China, 2011 (in Chinese with English abstract)



[30]Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008, 34: 688–695



[31]Xiong J, Wang H, Qiu L, Wu H W, Chen R S, He H B, Lin R Y, Lin W X. qRT-PCR analysis of key enzymatic genes related to phenolic acid metabolism in rice accessions (Oryza sativa L.) exposed to low nitrogen treatment. Allelopathy J, 2010, 25: 345–356



[32]王海斌, 熊君, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 氮素胁迫下强、弱化感水稻萜类代谢途径中关键酶基因差异表达的FQ-PCR分析. 作物学报, 2007, 33(8): 1329–1334



Wang H B, Xiong J, Fang C X, Qiu L, Wu W X, He H B, Lin W X. FQ-PCR analysis on the differential expression of the key enzyme genes involved in isoprenoid metabolic pathway in allelopathic and weak allelopathic rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta Agron Sin(作物学报), 2007, 33(8): 1329–1334(in Chinese with English abstract)



[33]孙小霞, 王海斌, 林辉锋, 何海斌, 陆锦池, 曾聪明, 熊君, 林文雄. 田间旱育条件下不同化感潜力水稻的抑草效应分析. 中国生态农业学报, 2009, 17: 842–846



Sun X X, Wang H B, Lin H F, He H B, Lu J C, Zeng C M, Xiong J, Lin W X. Effects of weed suppression by different allelopathic rice varieties under dry-raising condition. Chin J Eco-Agric, 2009, 17: 842–846 (in Chinese with English abstract)



[34]孙小霞, 王海斌, 何海斌, 陆锦池, 林文雄. 田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析. 中国生态农业学报, 2014, 22: 806–812



Sun X X, Wang H B, He H B, Lu J C, Lin W X. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions. Chin J Eco-Agric, 2014, 22: 806–812 (in Chinese with English abstract)



[35]Junaedi A, Jung W S, Chung I M, Kim K H. Differentially expressed genes of potentially allelopathic rice in response against barnyardgrass. J Crop Sci Biotechnol, 2007, 10: 231–236



[36]Pazares J, Ghosal D, Wienand U, Peterson P A, Saedler H. There gulatory C1 locus of Zea mays encodes a proterin with homology to myb-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558



[37]Cone K C, Burr F A, Burr B. Molecular analysis of the maize anthocyanin regulatory locus C 1. Proc Natl Acad Sci USA, 1986, 83: 9631–9635



[38]Moyano E, Martinez-Garcia J F, Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell, 1996, 8: 1519–1532



[39]Legay S, Lacombe E, Goicoechea M, Brière C, Séguin A, Mackay J, Grima-Pettenati J. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci, 2007, 173: 542–549

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!