Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (05): 673-682.doi: 10.3724/SP.J.1006.2015.00673

    Next Articles

Cloning and Functional Analysis of Lipid Transfer Protein Gene TaLTP in Wheat

LI Qian1,2,WANG Jing-Yi2,MAO Xin-Guo2,Li Ang2,GAO Li-Feng2,LIU Hui-Min1,JING Rui-Lian2,*   

  1. 1 College of Bioengineering, Shanxi University, Taiyuan 030006, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing
  • Received:2015-01-02 Revised:2015-03-19 Online:2015-05-12 Published:2015-03-30
  • Contact: 景蕊莲, E-mail: jingruilian@caas.cn, Tel: 010-82105829

Abstract:

Lipid transfer protein (LTP) is a kind of small molecular protein, which name stands for its ability to transfer lipid between cell membranes in plant. LTP plays a key role in cuticle synthesis and adaptation to abiotic stress. We cloned a full-length cDNA sequence of TaLTP gene encoding a lipid transfer protein from wheat (Triticum aestivum L.), which length is 510 bp with a 339 bp open reading frame. The cDNA sequence contains 112 amino acids with a N-terminal signal peptide within the first 25 amino acids. This gene contains eight cysteine residues conserved in amino acid sequences. TaLTP-s was detected to be located between markers WMC449 and WMC93 on chromosome 1A in wheat, with genetic distances of 2.1 cM and 5.9 cM, respectively. The result of subcellular localization exhibited that TaLTP-s is located in the cell membrane and cytoplasm. TaLTP-s was expressed in all tissues at flowering stage, including leaf, root, floret, anther and pistil, and mature seeds of wheat. The highest expression level was identified in the floret, especially in the anther. TaLTP-s was up-regulated by ABA, PEG, NaCl and 4ºC treatments which indicates that TaLTP-s is involved in different signal pathways responding to abiotic stress. Arabidopsis thaliana overexpressing TaLTP-s showed higher cell membrane stability and survival rate than the controls under salinity stress. These results provide a candidate gene for wheat improvement in response to salt and other abiotic stresses.

Key words: Wheat, TaLTP-s, Gene cloning, Abiotic stress, Salt tolerance

[1]Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 627–654



[2]Jose E M, Gomis R F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42: 355–365



[3]Douliez J P, Michon T, Elmorjani K, Marion D. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. Cereal Sci, 2000, 32: 1–20



[4]Lauga B, Charbonnel C L, Combes D. Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci, 2000, 157: 65–75



[5]Debono A, Yeats T H, Rose J K, Bird D, Jetter R, Kunst L, Samuels L. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 2009, 21: 1230–1238



[6]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176–183



[7]Wu G, Robertson A J, Liu X, Zheng P, Wilen R W, Nesbitt N T, Gusta L V. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J Plant Physiol, 2004, 161: 449–458



[8]Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 2014, 7: 722–738



[9]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399–403



[10]Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav, 2010, 5: 1121–1123



[11]Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol, 2010, 154: 149–162



[12]Rodrigues F D G J, De Laia M, Nhani-Jr A, Galbiati J, Ferro M I T, Ferro J, Zingaretti S. Sugarcane genes differentially expressed during water deficit. Biol Plant, 2011, 55: 43–53



[13]Choi A M, Lee S B, Cho S H, Hwang I, Hur C G, Suh M C. Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L.) seeds. Plant Physiol Biochem, 2008, 46: 127–139



[14]Jung H W, Kim K D, Wang H B K. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 2005, 221: 361–373



[15]Arondel V V, Vergnolle C, Cantrel C, Kader J. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci, 2000, 157: 1–12



[16]Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86



[17]Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin (Shanghai), 2004, 36: 51–56



[18]Boutrot F, Meynard D, Guiderdoni E, Joudrier P, Gautier M F. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta, 2007, 225: 843–862



[19]Jang C S, Lee H J, Chang S J, Seo Y W. Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci, 2004, 167: 995–1001



[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408



[21]Tae H K, Moon C K, Jong H P, Seong S H, Byung R K, Byoung Y M, Mi C S, Sung H C. Differential expression of rice lipid transfer protein gene (LTP) classes in response to abscisic acid, salt, salicylic acid, and the fungal pathogen magnaporthe grisea. J Plant Biol, 2006, 49: 371–375



[22]Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol, 1994, 105: 35–45



[23]Guo C, Ge X, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol, 2013, 82: 239–253



[24]Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824–836



[25]Yang D L, Jing R L, Chang X P, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176: 571–584



[26]Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64: 1755–1767



[27]Iraki N M, Singh N, Bressan R A, Carpita N C. Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress. Plant Physiol, 1989, 91: 48–53



[28]Sterk P, Booij H, Schellekens G A, Van Kammen A, De Vries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907–921



[29]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176–183



[30]Urao T, Yamaguchi S K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529–1539



[31]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi S K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78

[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[5] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[6] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[7] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[8] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[9] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[14] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[15] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!