Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (08): 1224-1232.doi: 10.3724/SP.J.1006.2016.01224

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Dynamics in Contents of Different Types of Polyamine in Wheat Embryos and Its Relationship with Resistance to Drought Stress

DU Hong-Yang1,2,LIU Gu-Ting3 YANG Qing-Hua2,LIU Huai-Pan1,2,*   

  1. 1College of Life Science and Agronomy / Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou Henan 466001, China; 2 The College of Agronomy / The Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, Henan, China; 3College of Biological Science, China Agricultural University , Beijing 100193, China
  • Received:2015-12-03 Revised:2016-05-09 Online:2016-08-12 Published:2016-05-23
  • Contact: 刘怀攀, Email: liuhuaipan2013@126.com, Tel: 0394-8178138 E-mail:duhongyang2005@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271627), the Start-up Fund for High-level Scholars of Zhoukou Normal University (ZKNU2015109), and the China Special Fund for Agro-Scientific Research in the Public Interest (201203077).

Abstract:

This study aimed at understanding the functions of different kinds of polyamine in developing embryos of wheat under drought stress. The drought resistant variety “Luomai 22” and the drought-sensitive variety “Yumai 48” were treated for 10 days with drought stress (DS) and DS plus exogenous polyamines (Spd and Spm) and inhibitors (MGBG and O-Phen) on the 10th day after anthesis. In both varieties, the levels of free Put, Spd and Spm and the content of acid soluble covalently conjugated polyamines (ASCC-PA) increased under DS treatment, particularly, the free Put content in Yumai 48 increased rapidly and continuously during 10 days after treatment. The increased magnitude of free Spd and Spm contents in Luomai 22 embryos was similar to that in Yumai 48 embryos at the early stage of DS, but significantly larger than that in Yumai 48 embryos at later stage of DS. The content of acid insoluble covalently conjugated Put (AISCC-Put) was low in both varieties at early stage of DS, however, increased obviously in Luomai 22 at later stage of DS, with a significantly higher level in Luomai 22 than in Yumai 48. Application of exogenous Spd or Spm resulted in significantly increased free Spd and Spm contents in Yumai 48 at later DS stage; simultaneously, the relative water content of flag leaf and the relative dry matter increase rate of grain increased and the relative plasma membrane permeability of flag leaf decreased, indicating improved drought resistance in Yumai 48. Polyamine inhibitors showed negative effects on drought resistance, in which MGBG had a strong inhibition on the conversion from free Put to free Spd or Spm in embryos of Luomai 22 and O-Phen depressed AISCC-Put induction by drought stress. These results suggest that drought tolerance of wheat might be improved by the easy conversion from free Put to free Spd, Spm, or AISCC-Put after flowering.

Key words: Drought stress, Wheat grain embryo, Polyamines

[1]Elisabeth T, Martin-Tanguy J. Floral induction and floral development of strawberry. Plant Growth Regul, 1995, 17: 157–165
[2]Icekson I, Apelbaum A. Evidence for transglutaminase activity in plant tissue. Plant Physiol, 1987, 84: 972–974
[3]Vondrakova Z, Eliasova K, Vagner M. Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul, 2015, 75: 405–414
[4]Ben Mohamed H, Vadel A M, Geuns J M C, Khemira H. Effects of hydrogen cyanamide on antioxidant enzymes activity, proline and polyamine contents during bud dormancy release in superior seedless grapevine buds. Acta Physiol Plant, 2012, 34: 429–437
[5]Cao D D, Hu J, Zhu S J, Hu W M, Knapp A. Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci Hort, 2010, 123: 301–307
[6]Legocka J, Sobieszczuk-Nowicka E. Sorbitol and NaCl stresses affect free, microsome-associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiol Plant, 2012, 34: 1145–1151
[7]Li Z, Zhou H, Peng Y, Zhang X Q, Ma X, Huang L K, Yan Y H . Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul, 2015, 76: 71–82
[8]杨建昌, 张亚洁, 张建华, 王志琴, 朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系. 作物学报, 2004, 30: 1069–1075
Yang J C, Chen Y J, Zhang J H, Wang Z Q, Zhu Q S. Changes in contents of polyamines in the flag leaf and their relationship with drought-resistance of rice cultivars under water deficiency stress. Acta Agron Sin, 2004, 30: 1069–1075 (in Chinese with English abstract)
[9]Yin Z P, Li S, Ren J, Song X S. Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Regul, 2014, 74: 209–218
[10]杨建昌, 朱庆森, 王志琴, 曹显祖. 水稻籽粒中内源多胺含量及其与籽粒充实和粒重的关系. 作物学报, 1997, 23: 385–392
Yang J C, Zhu Q S, Wang Z Q, Cao X Z. Polyamines in rice grains and their relations with grain plumpness and grain weight. Acta Agron Sin, 1997, 23: 385–392 (in Chinese with English abstract)
[11]谈桂露, 张耗, 付景, 王志琴, 刘立军, 杨建昌. 超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系. 作物学报, 2009, 35: 2225–2233
Tan G L, Zhang H, Fu J, Wang Z Q, Liu L J, Yang J C. Post-anthesis Changes in concentrations of polyamines in superior and inferior spikelet and their relation with grain filling of super rice. Acta Agron Sin, 2009, 35: 2225–2333 (in Chinese with English abstract)
[12]王志琴, 张耗, 王学明, 张自常, 杨建昌. 水稻籽粒多胺的浓度与米质的关系. 作物学报, 2007, 33: 1922–1927
Wang Z Q, Zhang H, Wang X M,Zhang Z C, Yang J C. Relationship between concentrations of polyamine in filling grains and rice quality. Acta Agron Sin, 2007, 33: 1922–1927 (in Chinese with English abstract)
[13]Yang W B, Yin Y P, Li Y, Cai T, Ni Y L, Peng D L, Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189–201
[14]刘杨, 温晓霞, 顾丹丹, 郭强, 曾爱, 李长江, 廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制. 作物学报, 2013, 39: 712–719
Liu Y, Wen X X, Gu D D, Guo Q, Zeng A, Li C J, Liao Y C. Effect of polyamine on grain filling of winter wheat and its physiological mechanism. Acta Agron Sin, 2013, 39: 712–719 (in Chinese with English abstract)
[15]Du H Y, Zhou X G, Yang Q H, Liu H P, Ronald K. Changes in H+-ATPase activity and conjugated polyamine contents in plasma membrane purified from developing wheat embryos under short-time drought stress. Plant Growth Regul, 2015, 75: 1–10
[16]Kiriakos K, Maria D, Christakis H, Kalliopi A, Roubelakis A. A narrow-pore HPLC method for the identification and quantitation of free, conjugated, and bound polyamines. Anal Biochemistry, 1993, 214: 484–489
[17]Gupta K, Dey A, Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol Plant, 2013, 35: 2015–2036
[18]李子银, 张劲松, 陈受宜. 水稻盐胁迫应答基因的克隆、表达及染色体定位. 中国科学: C辑, 1999, 29: 561–570
Li Z Y, Zhang J S, Chen S Y. Cloning and expression of response genes of rice to salt tress and its chromosomal location. Sci China: Ser C, 1999, 29: 561–570 (in Chinese)
[19]王晓云, 李向东, 邹琦. 外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响. 中国农业科学, 2000, 33(3): 30–35
Wang X Y, Li X D, Zou Q. Effect of polyamines on senescence of attached peanut leaves. Sci Agric Sin, 2000, 33(3): 30–35 (in Chinese with English abstract)
[20]Masgrau C, Altablella T, Farras R, Flores D, Thompson A J, Besford R T, Tiburcio A F. Inducible over-expression of oat arginine decarboxylase in transgenic tobacco plants. Plant J, 1997, 11: 465–473
[21]Szigeti Z, Lehoczki E. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag Sci, 2003, 59: 451–458
[22]Goicoechea N, Szalai G, Antolin M C, Sanchez-Diaz M, Paldi E. Influence of arbuscular mycorrhizae and rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol, 1998, 153: 706–711
[23]Kubis J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol, 2008, 165: 397–406
[24]Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael A. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun, 2007, 352: 486–490
[25]Sood S, Nagar P K. The effect of polyamines on leaf senescence in two diverse rose species. Plant Growth Regul, 2003, 39: 155–160
[26]Bais H P, Sudha G S, Rarishankar G A. Putrescine and silver nitrate influences shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow local. J Plant Growth Regul, 2000, 19: 238–248
[27]Romero H M, Norato R J, Posada C. Changes in polyamine content are related to low temperature resistance in potato plants. Acta Biol Colomb, 1999, 4: 27–47
[28]Shinozaki S, Ogata T, Horiuchi S. Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Sci Hort, 2000, 83: 33–41
[29]Scaramagli S, Biondi S, Leone A, Grillo S, Torrigiani P. Acclimation to low-water potential in potato cell suspension cultures leads to changes in putressine metabolism. Plant Physiol Biochem, 2000, 38: 345–351
[30]Musetti R, Scaramagli S, Vighi C, Pressacco L, Torrigiani P, Favali M A. The involvement of polyamines in phytoplasma-infected periwinkle (Catharanthus roseus L.) plants. Plant Biosyst, 1999, 133: 37–45
[31]Rabiti A L, Betti L, Bortolotti G, Marini F, Canova A, Bagni N, Torrigiani P. Shout-term polyamine response in TMV-inoculated hypersensitive and susceptible tobacco plants. New Phytol, 1998, 139: 549–553
[32]赵福庚, 孙诚, 刘友良, 章文华. 盐胁迫下大麦根系多胺代谢与其耐盐性的关系. 植物学报, 2003, 45: 295–300
Zhao F G, Sun C, Liu Y L, Zhang W H. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin, 2003, 45: 295–300 (in Chinese with English abstract)
[33]Kong L, Attree S M, Fowke L C. Effects of polyethylene glycol and methylglyoxal bis (guanylhydrazone) on endogenous polyamine levels and osmotic embryo maturation in white spruce. Plant Sci, 1998, 133: 211–220

[1] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[2] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[3] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[4] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[5] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[6] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[7] ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480.
[8] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[9] QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051.
[10] ZHANG Hai-Yan, WANG Bao-Qing, FENG Xiang-Yang, LI Guang-Liang, XIE Bei-Tao, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.] [J]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770.
[11] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[12] Yi YUAN,Shuang ZHU,Ting-Ting FANG,Jin-Jin JIANG,You-Ping WANG. Analysis of drought resistance and DNA methylation level of resynthesized Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(5): 693-704.
[13] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[14] LI Peng-Cheng,BI Zhen-Zhen,LIANG Wen-Jun,SUN Chao,ZHANG Jun-Lian,BAI Jiang-Ping. DNA methylation involved in regulating drought stress response of potato [J]. Acta Agronomica Sinica, 2019, 45(10): 1595-1603.
[15] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!