Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (12): 1764-1778.doi: 10.3724/SP.J.1006.2016.01764


Mapping QTLs for Wheat Seedling Traits in RILs Population of Yanda 1817 × Beinong 6 under Normal and Salt-Stress Conditions

ZHOU Sheng-Hui1,WU Qiu-Hong1,XIE Jing-Zhong1,CHEN Jiao-Jiao1,CHEN Yong-Xing1,FU Lin1,WANG Guo-Xin1,YU Mei-Hua1,WANG Zhen-Zhong2,ZHANG De-Yun1,WANG Ling1,WANG Li-Li1,ZHANG Yan3,LIANG Rong-Qi1,HAN Jun4,LIU Zhi-Yong1,*   

  1. 1College of Agronomy, China Agricultural University, Beijing 100193, China; 2 China Rural Technology Development Center, Beijing 100045, China;
    3 College of Horticulture, China Agricultural University, Beijing 100193, China; 4 Beijing University of Agriculture, Beijing 102206, China
  • Received:2016-04-19 Revised:2016-06-20 Online:2016-12-12 Published:2016-07-04
  • Contact: LIU Zhiyong, E-mail: zyliu@genetics.ac.cn E-mail:zhoushenghui826@gmail.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31301312, 31271710).


Seedling traits are known to be important indicators of salt tolerance inwheat (Triticumaestivum L.). Quantitative trait loci (QTLs) mapping for wheat seedling traits under salt stress and normal hydroponics conditions were conducted at three times during 2013 using a set of 230 recombinant inbred lines (RILs) derived from across of Yanda 1817 × Beinong 6 and an available high-density integrated SSR and SNP genetic linkage map. A total of 69 putative QTLs associated with sevenseedling traits were detected on 20 chromosomes except for 1Aby inclusive composite interval mapping (ICIM) at LOD≥2.5. A single QTL explained 2.70–19.00% of the phenotypic variation. Of which, 46 QTLs showed additive effects originated from Yanda 1817, whereas 23 QTLs showed additive effects derived from Beinong 6, indicating that the founder parentYanda 1817 is an important genetic resource for salt tolerance in wheat. Twelve QTLsare considered to be stable QTLs because they were detected in at least three environments, including the major QTLQTn.cau-7BS.1for tiller numberandthe salt-induced QTL QRn.cau-2Afor root number, bothoriginating from Yanda 1817. These results may explain the genetic bases of luxuriant growing habit and stress tolerance of Yanda 1817.

Key words: Wheat, RIL, Seedling, Salt tolerance, QTL

[1]Parida A K, Das A B. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf, 2005, 60: 324–349
[2]Rogers M E, Craig A D, Munns R E, Colmer T D, Nichols P G H, Malcolm C V, Barrett-Lennard E G, Brown A J, Semple W S, Evans P M, Cowley K, Hughes S J, Snowball R, Bennett S J, Sweeney G C, Dear B S, Ewing M A. The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric, 2005, 45: 301–329
[3]El-Hendawy S E, Hu Y C, Yakout G M, Awad A M, Hafiz S E, Schmidhalter U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron, 2005, 22: 243–253
[4]Zhang X K, Lu G Y, Long W H, Zou X L, Li F, Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci, 2014, 64: 60–73
[5]Tuberosa R, Salvi S. Dissecting QTLs for tolerance to drought and salinity.In: Jenks M, Hasegawa P,Jain SMeds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Netherlands, 2007. pp 381–411
[6]武玉清, 刘录祥, 郭会君, 赵林姝, 赵世荣.小麦苗期耐盐相关性状的QTL分析. 核农学报, 2007, 21: 545–549
Wu Y Q, Liu L X, Guo H J, Zhao L S, Zhao S R. Mapping QTL for salt tolerant traits in wheat. J Nucl Agric Sci, 2007, 21: 545–549 (in Chinese with English abstract)
[7]任永哲, 徐艳花, 贵祥卫, 王素平, 丁锦平, 张庆琛, 马原松, 裴冬丽.盐胁迫下调控小麦苗期性状的QTL分析. 中国农业科学, 2012, 45: 2793–2800
Ren Y Z, Xu Y H, Gui X W, Wang S P, Ding J P, Zhang Q C, Ma Y S, Pei D L. QTLs analysis of wheat seedling traits under salt stress. Sci Agric Sin, 2012, 45: 2793–2800 (in Chinese with English abstract)
[8]Garcia-Suarez J V, Diaz de Leon J L, Roder M S. Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress. Cereal Res Commun, 2010, 38: 163–174
[9]Xu Y, Li S, Li L, Zhang X, Xu H, An D. Mapping QTLs for salt tolerance with additive, epistatic and QTL?treatment interaction effects at seedling stage in wheat. Plant Breed, 2013, 132: 276–283
[10]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894
[11]Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P, Wang L L, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng H R, Yuan C G, You M S, Sun Q X, Wang J R, Wang L X, Luo M C, Han J, Liu Z Y. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 ×Beinong6. PLoS One, 2015, 10: e0118144
[12]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374
[13]Huang XQ, Coster H, Ganal MW, Roder MS. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 106: 1379–1389
[14]吴儒刚, 陈广凤, 李冬梅, 田纪春. 盐胁迫下小麦幼苗相关性状QTL加性及其上位性效应分析. 山东农业大学学报(自然科学版), 2015,46: 652–657
Wu R G, Chen G F, Li D M, Tian J C. Analysis on quantitative trait loci additive and epistatic effects of wheat seedling under salt stress. J Shandong Agric Univ (Nat Sci Edn), 2015, 46: 652–657(in Chinese with English abstract)
[15]Zhang H, Cui F, Wang L, Li J, Ding AM, Zhao CH, Bao YG, Yang QP, Wang HG. Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet, 2013, 92: 213–231
[16]Masoudi B, Mardi M, Hervan E M, Bihamta M R, Naghavi M R, Nakhoda B, Amini A. QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep, 2015. 33: 1790–1803
[17]Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Safety, 2014, 104: 202–208
[18]Xu Y F, An D G, Liu D C, Zhang A M, Xu H X, Li B. 2012. Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica, 186: 233–245
[19]Winicov I. New molecular approaches to improving salt tolerance in crop plants. Ann Bot, 1998, 82: 703–710
[20]Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012
[21]Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol, 2010, 51: 997–1006
[22]吴纪中, 刘妍妍, 王冲, 沈振国, 蔡士宾, 张巧凤, 夏妍, 王桂萍, 陈亚华. 人工海水胁迫下小麦种质资源的耐盐性筛选与鉴定. 植物遗传资源学报, 2014, 15: 948–953
Wu J Z, Liu Y Y, Wang C, Shen Z G, Cai S B, Zhang Q F, Xia Y, Wang G P, Chen Y H. Screening and identification of wheat germplasm for salt tolerance using artificial sea water. J Plant Genet Resour, 2014, 15: 948–953 (in Chinese with English abstract)
[23]Lindsay M P, Lagudah E S, Hare R A, Munns R. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol, 2004, 31: 1105–1114
[24]James R A, Davenport R, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537–1547
[25]Azadi A, Mardi M, Hervan E M, Mohammadi S A, Moradi F, Tabatabaee M T, Pirseyedi S M, Ebrahimi M, Fayaz F, Kazemi M, Ashkani S, Nakhoda B, Mohammadi-Nejad G. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep, 2015, 33: 102–120
[26]Austin D F, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38: 1296–1308
[27]龚继明, 郑先武, 杜保兴, 钱前, 陈受宜, 朱立煌, 何平.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究. 中国科学(C辑:生命科学), 2000, 30: 561–569
Gong J M, Zheng X W, Du B X, Qian Q, Chen S Y, Zhu L H, He P. Comparative study of QTL for rice important agronomic traits under normal and salt-Stress conditions. Sci China (Ser C), 2000, 30: 561–569 (in Chinese)
[28]金善宝. 中国小麦品种及其系谱. 北京: 农业出版社, 1983
Jin SB. Wheat Varieties and Their Pedigrees in China. Beijing: Agriculture Press, 1983 (in Chinese)
[29]庄巧生. 中国小麦品种改良及其系谱分析. 北京: 农业出版社, 2003
Zhuang QS. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)
[30]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404
Hang J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. ActaAgron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[7] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[8] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[9] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[10] ZHOU Jie-Qiang, ZHANG Gui-Lian, DENG Hua-Bing, MING Xing-Quan, LEI Bin, LI Fan, TANG Wen-Bang. Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner [J]. Acta Agronomica Sinica, 2022, 48(2): 320-331.
[11] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[12] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[15] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
Full text



No Suggested Reading articles found!