Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1699-1714.doi: 10.3724/SP.J.1006.2019.93004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Regulation of grain yield and nutrient absorption of modern summer maize varieties in the Yellow-Huaihe-Haihe Rivers region

CHENG Yi1,LIU Peng1,*(),LIU Yu-Wen2,PANG Shang-Shui3,DONG Shu-Ting1,ZHANG Ji-Wang1,ZHAO Bin1,REN Bai-Zhao1   

  1. 1 State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China;
    2 Agricultural Bureau of Shanghe County, Jinan 251600, Shandong, China
    3 Jinan New Oasis Agriculture Development Co. LTD, Jinan 251600, Shandong, China
  • Received:2019-01-24 Accepted:2019-05-12 Online:2019-11-12 Published:2019-06-03
  • Contact: Peng LIU E-mail:liupengsdau@126.com
  • Supported by:
    This study was supported by the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT02-08);the National Basic Research Program of China(2016YFD0300106);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Agricultural Major Applied Technological Innovation in Shandong Province

Abstract:

In order to investigate the grain yield and nutrient absorption of modern summer maize varieties in the Yellow-Huaihe- Haihe Rivers region, with the aim at proposing the theoretical basis for rational application of fertilizer, and high yield and high efficiency production, the experiment was conducted in 2016 at National Demonstration Center for New Crop Varieties in Shanghe, Jinan and the State Key Laboratory of Crop Biology, Shandong Agricultural University in Tai’an. Plants were sampled at maturity stage, and the grain yield, yield components, and mineral element uptake and utilization of plants were analyzed. Exploring analyses and normality tests showed that yield per plant, biomass per plant, 1000-kernel weight and grain yield were all conformed to normal distribution, with N (167.0, 22.72 2), N (285.0, 33.47 2), N (318.0, 35.75 2), and N (10.9, 1.50 2), ranging from 141.55 to 246.99 g plant -1, from 197.68 to 389.92 g plant -1, from 226.58 to 413.76 g 1000 kernel -1, and from 5.84 to 13.41 t hm -2, respectively. The average N requirement per 100 kg grain was 1.95 kg and declined with increasing grain yield. When the yield increased from < 7.0 t hm -2 to 8.0-9.0 t hm -2, the N requirement per 100 kg grain decreased from 2.15 to 1.96 kg due to increasing harvest index and decreasing grain N concentration. When the yield increased from 8.0-9.0 t hm -2 to 9.0-11.0 t hm -2, the N requirement per 100 kg grain decreased from 1.96 to 1.84 kg due to decreasing grain N concentration. When the yield was more than 11.0 t hm -2, the N requirement per 100 kg grain tended to be stable. The average P requirement per 100 kg grain was 0.97 kg, which was negatively correlated with grain yield, and declined from 1.07 to 0.92 kg when the yield increased from < 7.0 t hm -2 to > 11.0 t hm -2 due to increasing harvest index and declining grain P concentrations. The average K requirement per 100 kg grain was 1.89 kg, which was negatively correlated with grain yield, showing a decrease from 2.14 to 1.74 kg when the yield increased from < 7.0 t hm -2 to > 11.0 t hm -2, which was attributed to the increase of the harvest index and stem potassium concentrations, and the decline in leaf potassium concentrations. The grain yield of main maize varieties currently grown in the Yellow- Huaihe-Haihe Rivers region was (8.91±1.23) t hm -2, with the N, P2O5, and K2O requirement per 100 kg grain of (1.95±0.24), (0.97±0.11), and (1.89±0.28) kg, respectively. The N, P, and K requirement for plant growth increased with increasing grain yield, while the average N, P2O5 and K2O requirement for producing 100 kg grain declined with increasing grain yield.

Key words: the Yellow-Huaihe-Haihe Rivers region, maize, yield, grain yield, nutrient uptake

Supplementary table 1

Hybrid summer maize in the experiment"

序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
1 邦玉339 Bangyu 339 131 金海2010 Jinhai 2010 261 士海746 Shihai 746
2 邦玉359 Bangyu 359 132 金惠1571 Jinhui 1571 262 士海836 Shihai 836
3 邦玉591 Bangyu 591 133 金惠1648 Jinhui 1648 263 士海846 Shihai 846
4 邦玉593 Bangyu 593 134 金科玉3306 Jinkeyu 3306 264 士海916 Shihai 916
5 邦玉596 Bangyu 596 135 金来318 Jinlai 318 265 双惠87 Shuanghui 87
6 邦玉721 Bangyu 721 136 金来376 Jinlai 376 266 苏玉34 Suyu 34
7 帮豪玉108 Banghaoyu 108 137 金来515 Jinlai 515 267 苏玉42 Suyu 42
8 帮豪玉6511 Banghaoyu 6511 138 金来8号 Jinlai 8 268 粟玉99 Suyu 99
9 宝单10号 Baodan 10 139 金来918 Jinlai 918 269 太玉339 Taiyu 339
10 宝单918 Baodan 918 140 金来98 Jinlai 98 270 太玉811 Taiyu 811
11 宝单9号 Baodan 9 141 金来玉5号 Jinlaiyu 5 271 天塔119 Tianta 119
12 北青340 Beiqing 340 142 金美2 Jinmei 2 272 天塔619 Tianta 619
13 北青380 Beiqing 340 143 金农109 Jinnong 109 273 天塔688 Tianta 688
14 仓玉7S Cangyu 7S 144 金农168 Jinnong 168 274 天塔8318 Tianta 8318
15 沧玉76 Cangyu 76 145 金农9号 Jinnong 9 275 天泰16050 Tiantai 16050
16 承玉33 Chengyu 33 146 金圣玉005 Jinshengyu 005 276 天泰315 Tiantai 315
17 创新608 Chuangxin 608 147 金圣玉006 Jinshengyu 006 277 天泰316 Tiantai 316
18 纯玉958 Chunyu 958 148 金圣玉968 Jinshengyu 968 278 天泰339 Tiantai 339
19 大成168 Dacheng 168 149 金通152 Jintong 152 279 天泰366 Tiantai 366
20 大丰30 Dafeng 30 150 金阳光7号 Jinyangguang 7 280 天泰379 Tiantai 379
21 大华1146 Dahua 1146 151 金阳光9号 Jinyangguang 9 281 天泰522 Tiantai 522
22 大华1483 Dahua 1483 152 金玉3号 Jinyu 3 282 天益青7096 Tianyiqing 7096
23 大唐220 Datang 220 153 锦润919 Jinrun 919 283 铁研388 Tieyan 388
24 大玉3号 Dayu 3 154 锦绣80 Jinxiu 80 284 铁研58 Tieyan 58
25 丹3389 Dan 3389 155 京农科728 Jingnongke 728 285 万和5号 Wanhe 5
26 丹玉336 Danyu 336 156 京农科736 Jingnongke 736 286 伟科702 Weike 702
27 丹玉405 Danyu 405 157 京品50 Jingpin 50 287 伟科966 Weike 966
28 丹玉86 Danyu 86 158 九圣禾1268 Jiushenghe 1268 288 渭单3168 Weidan 3168
29 道吉1+1 Daoji 1+1 159 九圣禾561 Jiushenghe 561 289 渭单6000 Weidan 6000
30 德单123 Dedan 123 160 九圣禾562 Jiushenghe 562 290 沃峰188 Wofeng 188
31 德发5号 Defa 5 161 九圣禾661 Jiushenghe 661 291 沃峰9号 Wofeng 9
32 德利农318 Delinong 318 162 九玉Y02 Jiuyu Y02 292 沃玉3号 Woyu 3
33 德威1601 Dewei 1601 163 洰丰1518 Jufeng 1518 293 沃玉963 Woyu 963
34 登峰208 Dengfeng 208 164 洰丰339 Jufeng 339 294 沃玉964 Woyu 964
35 登海3737 Denghai 3737 165 洰丰811 Jufeng 811 295 五谷305 Wugu 305
序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
36 登海518 Denghai 518 166 均隆1210 Junlong 1210 296 五谷310 Wugu 310
37 登海605 Denghai 605 167 均隆1217 Junlong 1217 297 五谷355 Wugu 355
38 登海618 Denghai 618 168 科玉15 Keyu 15 298 五谷538 Wugu 538
39 登海6702 Denghai 6702 169 莱科818 Laike 818 299 五谷563 Wugu 563
40 登海678 Denghai 678 170 乐农8 Lenong 8 300 五谷568 Wugu 568
41 迪卡517 Dika 517 171 蠡试528 Lishi 528 301 五谷631 Wugu 631
42 迪卡667 Dika 667 172 蠡玉151 Liyu 151 302 五谷635 Wugu 635
43 鼎玉3号 Dingyu 3 173 蠡玉55 Liyu 55 303 五谷638 Wugu 638
44 东单60 Dongdan 60 174 蠡玉88 Liyu 88 304 先达601 Xianda 601
45 东单6531 Dongdan 6531 175 立原296 Liyuan 296 305 先单23 Xiandan 23
46 东方红119 Dongfanghong 119 176 立原298 Liyuan 298 306 先行1538 Xianxing 1538
47 东金6 Dongjin 6 177 立原316 Liyuan 316 307 先行1568 Xianxing 1568
48 东科301 Dongke 301 178 立原326 Liyuan 326 308 先行1658 Xianxing 1658
49 东润188 Dongrun 188 179 连胜188 Liansheng 188 309 先行628 Xianxing 628
50 东玉158 Dongyu 158 180 连胜2018 Liansheng 2018 310 先玉045 Xianyu 045
51 泛玉298 Fanyu 298 181 连胜2025 Liansheng 2025 311 先玉047 Xianyu 047
52 泛玉98 Fanyu 98 182 连胜208 Liansheng 208 312 先玉048 Xianyu 048
53 丰储1号 Fengchu 1 183 连胜216 Liansheng 216 313 先玉1140 Xianyu 1140
54 丰德存玉10号 Fengdecunyu 10 184 连胜238 Liansheng 238 314 先玉335 Xianyu 335
55 福地203 Fudi 203 185 连试10号 Lianshi 10 315 翔玉126 Xiangyu 126
56 福盛源1号 Fushengyuan 1 186 连试9号 Lianshi 9 316 翔玉322 Xiangyu 322
57 福盛源57 Fushengyuan 57 187 联科69 Lianke 69 317 翔玉998 Xiangyu 998
58 冠丰116 Guanfeng 116 188 良玉23 Liangyu 23 318 新单61 Xindan 61
59 冠丰117 Guanfeng 117 189 良玉911 Liangyu 911 319 新单65 Xindan 65
60 冠丰118 Guanfeng 118 190 良玉99 Liangyu 99 320 新单68 Xindan 68
61 冠丰178 Guanfeng 178 191 良玉DF100 Liangyu DF100 321 新科891 Xinke 891
62 冠丰3号 Guanfeng 3 192 良玉DF600 Liangyu DF600 322 新科910 Xinke 910
63 汉单168 Handan 168 193 辽575 Liao 575 323 新宽诚13 Xinkuancheng 13
64 汉单175 Handan 175 194 龙华307 Longhua 307 324 新玉47 Xinyu 47
65 汉单777 Handan 777 195 龙华368 Longhua 368 325 鑫研218 Xinyan 218
66 航星118 Hangxing 118 196 龙华369 Longhua 369 326 延玉988 Yanyu 988
67 航研9658 Hangyan 9658 197 龙作1号 Longzuo 1 327 益青7096 Yiqing 7096
68 豪威168 Haowei 168 198 庐玉9105 Luyu 9108 328 优迪919 Youdi 919
69 豪威568 Haowei 568 199 鲁北67 Lubei 67 329 宇玉30 Yuyu 30
70 昊玉673 Haoyu 673 200 鲁单9056 Ludan 9056 330 郁青358 Yuqing 358
71 合丰育118 Hefengyu 118 201 鲁单9066 Ludan 9066 331 裕丰105 Yufeng 105
72 荷玉007 Heyu 007 202 鲁单9088 Ludan 9088 332 豫单606 Yudan 606
73 荷玉127 Heyu 127 203 鲁宁184 Luning 184 333 豫禾357 Yuhe 357
74 荷玉138 Heyu 138 204 鲁宁776 Luning 776 334 豫禾358 Yuhe 358
75 荷玉157 Heyu 157 205 鲁星513 Luxing 513 335 豫禾588 Yuhe 588
76 荷玉167 Heyu 167 206 鲁星515 Luxing 515 336 豫禾781 Yuhe 781
77 荷玉187 Heyu 187 207 潞研1502 Luyan 1502 337 豫禾868 Yuhe 868
78 黑马603 Heima 603 208 潞玉36 Luyu 36 338 豫玉863 Yuyu 863
79 恒丰102 Hefeng 102 209 美豫168 Meiyu 168 339 源丰YT008 Yuanfeng YT008
80 恒丰玉618 Hefengyu 618 210 美豫269 Meiyu 269 340 昭阳7号 Zhaoyang 7
81 恒丰玉698 Hefengyu 698 211 美豫512 Meiyu 512 341 兆育11 Zhaoyu 11
82 弘玉9号 Hongyu 9 212 美豫5号 Meiyu 5 342 兆育17 Zhaoyu 17
83 华诚168 Huacheng 168 213 美豫7号 Meiyu 7 343 兆育261 Zhaoyu 261
84 华科336 Huake 336 214 梦玉908 Mengyu 908 344 兆育298 Zhaoyu 298
85 华良29 Hualiang 29 215 梦玉909 Mengyu 909 345 正弘659 Zhenghong 659
序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
序号
No.
品种
Hybrid
86 华良57 Hualiang 57 216 明科玉1号 Mingkeyu 1 346 正玉16 Zhengyu 16
87 华良78 Hualiang 78 217 明科玉2号 Mingkeyu 2 347 正玉998 Zhengyu 998
88 华鲁919 Hualu 919 218 明科玉33 Mingkeyu 33 348 郑单1002 Zhengdan 1002
89 华美1号 Huamei 1 219 明科玉77 Mingkeyu 77 349 郑单958 Zhengdan 958
90 华美368 Huamei 368 220 宁禾4552 Ninghe 4552 350 中地79 Zhongdi 79
91 华农138 Huanong 138 221 宁研16002 Ningyan 16002 351 中地88 Zhongdi 88
92 华盛801 Huasheng 801 222 宁研16011 Ningyan 16011 352 中地89 Zhongdi 89
93 华皖267 Huawan 267 223 宁研518 Ningyan 518 353 中汇1402 Zhonghui 1402
94 华皖602 Huawan 602 224 宁玉468 Ningyu 468 354 种源SY168 Zhongyuan SY168
95 华皖611 Huawan 611 225 农大367 Nongda 367 355 众信338 Zhongxin 338
96 华皖617 Huawan 617 226 农大372 Nongda 372 356 众信978 Zhongxin 978
97 华玉777 Huayu 777 227 农华816 Nonghua 816 357 淄玉14 Ziyu 14
98 滑玉168 Huayu 168 228 农良2209 Nongliang 2209 358 DF188
99 滑玉388 Huayu 388 229 农星207 Nongxing 207 359 DF688
100 怀玉208 Huaiyu 208 230 农星2126 Nongxing 2126 360 DF718
101 怀玉23 Huaiyu 23 231 诺达1号 Nuoda 1 361 DY206
102 汇丰16 Huifeng 16 232 平安169 Ping’an 169 362 DYS9-3
103 惠农609 Huinong 609 233 平安186 Ping’an 186 363 G450
104 机玉12 Jiyu 12 234 平安998 Ping’an 998 364 GS004
105 机玉3号 Jiyu 3 235 齐单128 Qidan 128 365 J1483
106 激活20 Jihuo 20 236 齐单1号 Qidan 1 366 LD2006
107 吉东136 Jidong 136 237 强盛103 Qiangsheng 103 367 LS838
108 吉东828 Jidong 828 238 强盛288 Qiangsheng 288 368 LY1312
109 吉利198 Jili 198 239 强盛368 Qiangsheng 368 369 LY23
110 吉农大819 Jinongda 819 240 强盛369 Qiangsheng 369 370 LY317
111 吉农大889 Jinongda 889 241 强盛388 Qiangsheng 388 371 MC670
112 吉农大928 Jinongda 928 242 强硕168 Qiangshuo 168 372 MC703
113 纪元128 Jiyuan 128 243 青农11 Qingnong 11 373 NK718
114 纪元168 Jiyuan 168 244 秋乐218 Qiule 218 374 NK815
115 济玉1201 Jiyu 1201 245 全玉1233 Quanyu 1233 375 RY39
116 济玉1302 Jiyu 1302 246 荃研2号 Quanyan 2 376 Sanb 007
117 济玉1305 Jiyu 1305 247 泉银226 Quanyin 226 377 SK567
118 济玉1419 Jiyu 1419 248 泉玉217 Quanyu 217 378 SPR958
119 济玉3240 Jiyu 3240 249 泉玉7号 Quanyu 7 379 SY8054
120 济玉901 Jiyu 901 250 瑞普908 Ruipu 908 380 WY1838
121 冀农121 Jinong 121 251 瑞普909 Ruipu 909 381 WY911
122 冀农1号 Jinong 1 252 瑞玉669 Ruiyu 669 382 WY979
123 冀玉179 Jiyu 179 253 三北218 Sanbei 218 383 YF3240
124 冀玉19 Jiyu 19 254 山连2号 Shanlian 2 384 ZD103
125 金诚6号 Jincheng 6 255 陕科10号 Shaanke 10 385 ZD166
126 金海111 Jinhai 111 256 陕科6号 Shaanke 6 386 ZD194
127 金海1130 Jinhai 1130 257 圣玉358 Shengyu 358 387 ZD94
128 金海1150 Jinhai 150 258 圣玉青1号 Shengyuqing 1 388 ZH308
129 金海13 Jinhai 13 259 盛瑞999 Shengrui 999 389 ZH503
130 金海1488 Jinhai 1488 260 士海738 Shihai 738 390 ZH511

Fig. 1

Boxplots of exploring analysis for yield-related traits"

Fig. 2

Histograms with normal curve for yield-related traits"

Table 1

Descriptive statistics of grain yield at different yield ranges"

产量范围
Yield range (t hm-2)
样本量
n
平均值Mean 标准差SD 最小值Min. 最大值Max. 25%位点25%Q 50%位点50%Q 75%位点75%Q
<7.0 20 6.52 0.35 5.84 6.98 6.22 6.46 6.90
7.0-8.0 74 7.56 0.28 7.03 7.99 7.33 7.59 7.79
8.0-9.0 117 8.54 0.28 8.01 9.00 8.26 8.56 8.79
9.0-10.0 105 9.47 0.28 9.01 9.99 9.23 9.44 9.72
10.0-11.0 53 10.41 0.28 10.03 10.93 10.11 10.45 10.64
>11.0 21 11.47 0.54 11.08 13.41 11.13 11.31 11.58
总和Total 390 8.91 1.23 5.84 13.41 8.07 8.85 9.75

Table 2

Correlation coefficient between yield-related traits and N absorption parameters"

籽粒产量
Grain yield
生物量
Biomass
收获指数
Harvest index
地上部吸氮量 Aboveground
N uptake
每100 kg籽粒
氮素需求量
N requirement per 100 kg grain
茎秆氮浓度
Stem N
concentration
叶片氮浓度
Leaf N
concentration
生物量
Biomass
0.855**
收获指数
Harvest index
0.508** -0.007
地上部吸氮量
Aboveground N uptake
0.622** 0.814** -0.151**
每生产100 kg籽粒氮素需求量
N requirement per 100 kg grain
-0.402** -0.012 -0.761** 0.459**
茎秆氮浓度
Stem N concentration
0.053 0.073 -0.020 0.371** 0.369**
叶片氮浓度
Leaf N concentration
-0.051 -0.085 0.042 0.134** 0.210** 0.115*
籽粒氮浓度
Grain N concentration
-0.235** -0.020 -0.427** 0.446** 0.789** 0.085 -0.031

Fig. 3

Changes of biomass and harvest index at harvest stage of summer maize under different yield ranges The solid and dashed lines indicate median and mean, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Fig. 4

Relationship between grain yield and aboveground N uptake, and N requirement per 100 kg grain (a) The solid line represents the relationship and the dashed lines represent the prediction range (P=0.95), **significant at P < 0.01; The solid and dashed lines indicate median and mean, respectively. (b) The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Fig. 5

N grain production efficiency and N harvest index of summer maize for different yield ranges The solid and dashed lines indicate median and mean, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Table 3

N concentration in stem, leaf, and grain of summer maize for different yield ranges (g kg-1)"

器官 Organ 产量范围
Yield range (t hm-2)
平均值Mean 标准差SD 最小值Min. 最大值Max. 25%位点25%Q 50%位点50%Q 75%位点75%Q
茎秆Stem <7.0 5.58 0.97 3.64 8.55 5.08 5.57 6.14
7.0-8.0 6.02 1.00 3.88 8.61 5.40 5.92 6.61
8.0-9.0 5.85 1.04 3.86 8.83 5.02 5.73 6.58
9.0-10.0 5.94 0.99 3.95 8.52 5.13 5.93 6.65
10.0-11.0 6.09 0.91 4.33 7.93 5.48 6.00 6.70
>11.0 5.98 0.92 4.50 8.00 5.19 5.90 6.25
叶片 Leaf <7.0 12.42 2.24 9.14 17.00 10.46 12.23 14.09
7.0-8.0 12.15 1.56 7.66 16.21 10.91 12.21 13.26
8.0-9.0 11.70 1.58 7.19 15.28 10.55 11.75 12.71
9.0-10.0 11.78 1.49 8.63 16.55 10.88 11.62 12.56
10.0-11.0 11.98 1.57 8.22 15.47 11.10 12.08 13.02
>11.0 11.76 1.62 8.68 15.08 10.85 11.61 12.94
籽粒 Grain <7.0 10.12 1.39 7.18 13.32 9.46 10.13 10.92
7.0-8.0 10.03 1.14 7.38 12.78 9.25 9.89 10.91
8.0-9.0 9.76 1.17 7.02 12.45 9.09 9.80 10.50
9.0-10.0 9.45 1.09 7.20 12.86 8.60 9.56 10.25
10.0-11.0 9.26 1.04 7.30 11.70 8.33 9.19 10.16
>11.0 9.43 0.96 7.37 11.03 8.84 9.42 10.19

Fig. 6

Relationship between grain yield and aboveground P uptake, and P requirement per 100 kg grain (a) The solid line represents the relationship and the dashed lines represent the prediction band (P = 0.95), **significant at P < 0.01; The solid and dashed lines indicate median and mean, respectively. (b) The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Fig. 7

P grain production efficiency and P harvest index of summer maize for different yield ranges The solid and dashed lines indicate median and mean, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Table 4

Correlation coefficient between yield-related traits and P absorption parameters"

籽粒产量
Grain yield
生物量
Biomass
收获指数
Harvest index
地上部吸磷量Aboveground
P uptake
每生产100 kg
籽粒磷素需求量
P requirement per 100 kg grain
茎秆磷浓度
Stem P
concentration
叶片磷浓度
Leaf P concentration
生物量
Biomass
0.855**
收获指数
Harvest index
0.508** -0.007
地上部吸磷量
Aboveground P uptake
0.667** 0.839** -0.108*
每生产100 kg籽粒磷素需求量
P requirement per 100 kg grain
-0.396** -0.013 -0.752** 0.412**
茎秆磷浓度
Stem P concentration
-0.068 -0.001 -0.134** 0.331** 0.488**
叶片磷浓度
Leaf P concentration
-0.030 -0.001 -0.060 0.238** 0.325** 0.188**
籽粒磷浓度
Grain P concentration
-0.120* -0.036 -0.184** 0.415** 0.673** 0.173** 0.134**

Table 5

P concentration in stem, leaf, and grain of summer maize for different yield ranges (g kg-1)"

器官
Organ
产量范围
Yield range (t hm-2)
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
25%位点
25%Q
50%位点
50%Q
75%位点
75%Q
茎秆Stem <7.0 4.03 0.57 2.95 5.31 3.64 3.99 4.45
7.0-8.0 4.01 0.42 2.97 4.87 3.76 3.99 4.28
8.0-9.0 3.96 0.51 2.99 5.77 3.65 3.91 4.21
9.0-10.0 3.97 0.46 2.87 5.63 3.70 3.99 4.15
10.0-11.0 3.83 0.41 3.02 4.79 3.50 3.76 4.13
>11.0 4.03 0.39 3.34 4.85 3.75 4.10 4.32
器官
Organ
产量范围
Yield range (t hm-2)
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
25%位点
25%Q
50%位点
50%Q
75%位点
75%Q
叶片 Leaf <7.0 4.67 0.56 3.70 5.91 4.19 4.67 5.00
7.0-8.0 4.72 0.53 3.43 5.88 4.39 4.65 5.11
8.0-9.0 4.59 0.56 3.20 6.40 4.21 4.58 4.94
9.0-10.0 4.55 0.54 3.50 5.89 4.11 4.50 4.95
10.0-11.0 4.64 0.58 3.58 6.12 4.25 4.63 4.99
>11.0 4.75 0.62 3.68 5.90 4.23 4.65 5.41
籽粒 Grain <7.0 4.63 0.46 3.69 5.44 4.27 4.65 5.01
7.0-8.0 4.74 0.73 3.65 10.01 4.40 4.70 4.96
8.0-9.0 4.54 0.39 3.66 5.38 4.19 4.53 4.83
9.0-10.0 4.49 0.44 3.38 5.36 4.17 4.51 4.83
10.0-11.0 4.53 0.37 3.92 5.42 4.25 4.54 4.74
>11.0 4.60 0.38 3.97 5.35 4.32 4.61 4.87

Fig. 8

Relationship between grain yield and aboveground K uptake, and K requirement per 100 kg grain (a) The solid line represents the relationship and the dashed lines represent the prediction band (P=0.95), **significant at P<0.01; The solid and dashed lines indicate median and mean, respectively. (b) The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Fig. 9

K grain production efficiency and K harvest index of summer maize for different yield ranges The solid and dashed lines indicate median and mean, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles indicate the 95th and 5th percentiles."

Table 6

Correlation coefficient between yield-related traits and K absorption parameters"

籽粒产量
Grain yield
生物量
Biomass
收获指数
Harvest index
地上部吸钾量 Aboveground
K uptake
每100 kg籽粒
钾素需求量
K requirement per 100 kg grain
茎秆钾浓度
Stem K
concentration
叶片钾浓度
Leaf K
concentration
生物量
Biomass
0.855**
收获指数
Harvest index
0.508** -0.007
地上部吸钾量
Aboveground K uptake
0.504** 0.663** -0.128*
每生产100 kg籽粒钾素需求量
K requirement per 100 kg grain
-0.411** -0.104* -0.626** 0.571**
籽粒产量
Grain yield
生物量
Biomass
收获指数
Harvest index
地上部吸钾量 Aboveground
K uptake
每100 kg籽粒
钾素需求量
K requirement per 100 kg grain
茎秆钾浓度
Stem K
concentration
叶片钾浓度
Leaf K
concentration
茎秆钾浓度
Stem K concentration
0.118* -0.087 0.367** 0.496** 0.407**
叶片钾浓度
Leaf K concentration
-0.175** -0.143** -0.097 0.290** 0.459** 0.104*
籽粒钾浓度
Grain K concentration
-0.059 -0.078 0.016 0.191** 0.247** 0.139** -0.021

Table 7

K concentration in stem, leaf, and grain of summer maize for different yield ranges (g kg-1)"

器官
Organ
产量范围
Yield range (t hm-2)
平均值
Mean
标准差SD 最小值Min. 最大值Max. 25%位点25%Q 50%位点50%Q 75%位点75%Q
茎秆Stem <7.0 14.52 2.36 10.27 18.40 12.65 14.91 16.58
7.0-8.0 15.24 2.72 9.78 20.58 12.86 15.32 17.09
8.0-9.0 15.53 2.44 10.54 22.06 13.85 15.52 17.18
9.0-10.0 15.45 2.93 9.58 23.54 13.64 14.99 16.93
10.0-11.0 15.60 2.43 10.88 21.50 13.70 15.80 17.44
>11.0 16.92 2.57 12.20 22.53 15.01 17.14 18.50
叶片 Leaf <7.0 15.57 1.96 12.66 18.98 14.27 15.10 17.24
7.0-8.0 15.33 2.63 9.20 21.75 13.82 15.71 16.96
8.0-9.0 15.63 2.77 9.92 21.99 13.58 15.55 17.21
9.0-10.0 14.37 2.49 9.73 20.49 12.32 14.59 15.81
10.0-11.0 14.32 2.80 10.03 22.46 12.41 13.64 15.49
>11.0 14.47 2.09 11.78 18.92 12.57 14.29 16.56
籽粒 Grain <7.0 2.67 0.40 1.70 3.17 2.44 2.79 2.94
7.0-8.0 2.65 0.40 1.64 3.74 2.39 2.70 2.95
8.0-9.0 2.55 0.45 1.45 4.12 2.31 2.62 2.83
9.0-10.0 2.60 0.43 1.64 4.01 2.30 2.60 2.93
10.0-11.0 2.51 0.44 1.46 3.34 2.19 2.55 2.80
>11.0 2.50 0.44 1.76 3.32 2.18 2.47 2.80
[1] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[2] 吴良泉, 武良, 崔振岭, 陈新平, 张福锁 . 中国玉米区域氮磷钾肥推荐用量及肥料配方研究. 土壤学报, 2015,52:802-817.
Wu L Q, Wu L, Cui Z L, Chen X P, Zhang F S . Maize production regions in China. Acta Pedol Sin, 2015,52:802-817 (in Chinese with English abstract).
[3] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S . Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009,106:3041-3046.
[4] Gheysari M, Mirlatifi S M, Homaee M, Asadi M E, Hoogenboom G . Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manage, 2009,96:946-954.
[5] 刘韵, 柳文丽, 朱波 . 施肥方式对冬小麦-夏玉米轮作土壤N2O排放的影响. 土壤学报, 2016,53:735-745.
Liu Y, Liu W L, Zhu B . Effect of fertilization regime on soil N2O emission from upland field under wheat-maize rotation system. Acta Pedol Sin, 2016,53:735-745 (in Chinese with English abstract).
[6] Omonode R A, Halvorson A D, Gagnon B, Vyn T J . Achieving lower nitrogen balance and higher nitrogen recovery efficiency reduces nitrous oxide emissions in north America’s maize cropping systems. Front Plant Sci, 2017,8:1080.
[7] 石清琢, 王国宏, 刘晓丽 . 加快玉米品种更替、大力推广种植耐密植品种. 农业经济, 2012, ( 11):98-99.
Shi Q Z, Wang G H, Liu X L . Accelerating the replacement of maize varieties and vigorously promoting planting density resistant varieties. Agric Econ, 2012, ( 11):98-99 (in Chinese).
[8] 陈欢, 王全忠, 周宏 . 中国玉米生产布局的变迁分析. 经济地理, 2015,35(8):165-171.
Chen H, Wang Q Z, Zhou H . Empirical analysis of corn spatial distribution variation in China. Econ Geogr, 2015,35(8):165-171.
[9] Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J . Maize yield gains in Northeast China in the last six decades. J Integr Agric, 2013,12:630-637.
[10] 董树亭, 高荣岐, 胡昌浩, 刘鹏, 刘开昌, 孙庆泉, 王空军, 谢瑞芝, 张吉旺 . 玉米生态生理与产量品质形成. 北京: 高等教育出版社, 2006. pp 1-41.
Dong S T, Gao R Q, Hu C H, Liu P, Liu K C, Sun Q Q, Wang K J, Xie R Z, Zhang J W. Ecological Physiology and Yield and Quality Formation of Maize. Beijing: Higher Education Press, 2006. pp 1-41(in Chinese).
[11] 王空军, 董树亭, 胡昌浩, 刘开昌, 孙庆泉 . 我国1950s-1990s推广的玉米品种叶片光合特性演进规律研究. 植物生态学报, 2001,25:247-251.
Wang K J, Dong S T, Hu C H, Liu K C, Sun Q Q . Improvement in photosynthetic characteristics among maize varieties in China from 1950s to 1990s. Acta Phytoecol Sin, 2001,25:247-251 (in Chinese with English abstract).
[12] Wang T Y, Ma X L, Li Y, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y H, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Smith S . Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011,51:512-525.
[13] Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T . Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 2012,185:395-406.
[14] Ding L, Wang K J, Jiang G M, Biswas D K . Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot, 2005,96:925-930.
[15] Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M . Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005,93:108-115.
[16] Duvick D N, Smith J S C, Cooper M . Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev, 2010,24:109-151.
[17] 刘鑫, 谢瑞芝, 牛兴奎, 修文雯, 李少昆, 高世菊, 张凤路 . 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响. 作物杂志, 2012, ( 5):126-130.
Liu X, Xie R Z, Niu X K, Xiu W W, Li S K, Gao S J, Zhang F S . Effects of planting density on lodging resistance performance of maize varieties of different eras in Northeast China. Crops, 2012, ( 5):126-130 (in Chinese with English abstract).
[18] Yan L, Zhang Z D, Zhang J J, Gao Q, Feng G Z, Abelrahman A M, Chen Y . Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China. Environ Sci Pollut Res, 2016,23:4576-4584.
[19] 王空军, 张吉旺, 郭玉秋, 胡昌浩, 董树亭, 蒋高明 . 我国北方玉米品种个体产量潜力与氮利用效率研究. 应用生态学报, 2005,16:879-894.
Wang K J, Zhang J W, Guo Y Q, Hu C H, Dong S T, Jiang G M . Individual grain yield potential and nitrogen utilization efficiency of Zea mays cultivars widely planted in north China. Chin J Appl Ecol, 2005,16:879-894 (in Chinese with English abstract).
[20] Zhang J . China’s success in increasing per capita food production. J Exp Bot, 2011,62:3707-3711.
[21] Hou P, Gao Q, Xie R Z, Li S K, Meng Q F, Kirkby E A, Römheld V, Müller T, Zhang F S, Cui Z L, Chen X P . Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China. Field Crops Res, 2012,129:1-6.
[22] 吴良泉 . 基于“大配方、小调整”的中国三大粮食作物区域配肥技术研究. 中国农业大学博士学位论文, 北京, 2014.
Wu L Q . Fertilizer Recommendations for Three Major Cereal Crops Based on Regional Fertilizer Formula and Site Specific Adjustment in China. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[23] 胡昌浩, 潘子龙 . 夏玉米同化产物积累与养分吸收分配规律的研究: II. 氮、磷、钾的吸收、分配与转移规律. 中国农业科学, 1982,15(2):38-48.
Hu C H, Pan Z L . Study on accumulation of assimilation products, nutrient absorption and distribution of summer maize: II. Nitrogen, phosphorus and potassium absorption, distribution and transfer. Sci Agric Sin, 1982,15(2):38-48 (in Chinese with English abstract).
[24] 佟屏亚, 凌碧莹 . 夏玉米氮、磷、钾积累和分配态势研究. 玉米科学, 1994,2(2):65-69.
Tong P Y, Ling B Y . Accumulation and distribution of nitrogen, phosphorus and potassium in summer maize. Maize Sci, 1994,2(2):65-69 (in Chinese).
[25] 陈国平 . 玉米的矿质营养和施肥技术(综述). 玉米科学, 1992, ( 1):59-66.
Chen G P . Mineral nutrition and fertilization technology of maize (review). Maize Sci, 1992, ( 1):59-66 (in Chinese).
[26] Liu M Q, Yu Z R, Liu Y H, Konijn N T . Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutr Cycl Agroecosyst, 2006,74:245-258.
[27] Xu X P, He P, Pampolinoc M F, Chuan L M, Johnston A M, Qiu S J, Zhao S C, Zhou W . Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Res, 2013,150:115-125.
[28] 岳善超 . 小麦玉米高产体系的氮肥优化管理. 中国农业大学博士学位论文, 北京, 2013.
Yue S C . Optimized Nitrogen Management in High Yield System of Wheat and Maize. PhD Dissertation of China Agricultural University, Beijing, China, 2013 (in Chinese with English abstract).
[29] 齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013,19:26-36.
Qi W Z, Chen X L, Liu P, Liu H H, Li G, Shao L J, Wang F F, Dong S T, Zhang J W, Zhao B . Characteristics of dry matter, accumulation and distribution of N, P and K of super high yield summer maize. Plant Nutr Fert Sci, 2013,19:26-36 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[12] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!