Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 544-556.doi: 10.3724/SP.J.1006.2020.91041


Characteristics of yield components and population quality in high-nitrogen- utilization wheat cultivars

DING Yong-Gang1,LI Fu-Jian1,WANG Ya-Hua1,TANG Xiao-Qing1,DU Tong-Qing2,ZHU Min1,LI Chun-Yan1,ZHU Xin-Kai1,DING Jin-Feng1,*(),GUO Wen-Shan1,*()   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Wheat Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2 Suining Plant Protection Management Station, Xuzhou 221200, Jiangsu, China
  • Received:2019-06-24 Accepted:2019-12-26 Online:2020-04-12 Published:2020-01-14
  • Contact: Jin-Feng DING,Wen-Shan GUO E-mail:jfdin@yzu.edu.cn;wheat@yzu.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300405);the National Natural Science Foundation of China(31771711);the Technology System of Modern Agriculture Industry (Wheat) in Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(PPZY2015A060);the Science and Technology Innovation Team of Yangzhou University


In the rice-wheat rotation system, 24 and 23 wheat cultivars were separately planted in Yangzhou and Suining of Jiangsu province in 2016-2017 and 2017-2018. According to nitrogen utilization rate (NUR), these cultivars were clustered into three groups, i.e., NUR-H (NUR ≥ 50%), NUR-M (NUR 40%-50%), and NUR-L (NUR ≤ 40%), to identify the differences in grain yield, yield components, and population quality, which would provide a reference for cultivar selection for high-yield and high-efficiency in wheat production. Yangmai 25 and Ningmai 21 in Yangzhou and Huaimai 35 in Suining showed NUR-H phenotypes in consecutive two years. Grain yield of the NUR-H cultivars was more than 6500 kg hm -2 in Yangzhou and 7000 kg hm -2 in Suining, which were significantly higher than those of NUR-M and NUR-L groups. NUR-H group had more spikes, and it grains per spike and 1000-grain weight were not significantly different from those of the other groups. Grain yield and spikes number were significantly positively correlated with NUR among different cultivars. More stem and tiller number, higher percentage of fertile tillers and higher leaf area index (LAI) at the milk-ripening stage were shown in the NUR-H group. A higher dry matter accumulation at stages of booting, anthesis, and maturity, after anthesis, and in the vegetative organs at maturity were found in the NUR-H group. However, there were no differences in dry matter remobilization and harvest index among different cultivars. Number of stems and tillers at booting and anthesis, LAI at the milk-ripe stage, and dry matter accumulation at each stage after anthesis, and in the vegetative organs at maturity were significantly positively correlated with NUR in the all cultivar in two sites. A vigorous tillering capacity at the early growing phase and a higher LAI and photosynthetic production at the late growth stages could be observed in NUR-H cultivars, resulting in more photosynthate for grain-filling. Furthermore, the critical parameters of cultivar screening for high-yield and high-efficiency in wheat following rice were proposed, that is 16,000-20,000 kg hm -2 dry matter accumulation at maturity and 4100-6700 kg hm -2 dry matter accumulation after anthesis.

Key words: wheat following rice, varieties, nitrogen utilization rate, yield components, population quality characteristics

Fig. 1

Accumulated temperature, precipitation, and sunshine during different growth phases SD: seeding; BW: beginning of winter; EL: elongation; BT: booting stage; MS: maturity stage."

Table 1

Different types of wheat varieties in the test"

Variety type
NUR range (%)
2016-2017 扬州 Yangzhou 氮高效 NUR-H ≥50 8 宁麦22 Ningmai 22, #扬麦25 Yangmai 25, #宁麦21 Ningmai 21, 扬麦21 Yangmai 21, 扬麦23 Yangmai 23, 扬辐麦4号 Yangfumai 4, 扬辐麦1025 Yangfumai 1025, 华麦7号 Huamai 7
氮中效 NUR-M 40-50 8 #扬麦13 Yangmai 13, 镇麦12 Zhenmai 12, 华麦6号 Huamai 6, 安农1124 Annong 1124, 苏麦188 Sumai 188, 镇麦11 Zhenmai 11, 扬麦20 Yangmai 20, 扬麦22 Yangmai 22
氮低效 NUR-L ≤40 8 浩麦1号 Haomai 1, #扬辐麦2054 Yangfumai 2054, #生选6号 Shengxuan 6, #宁麦23 Ningmai 23, #宁麦13 Ningmai 13, 苏麦11 Sumai 11, 扬麦16 Yangmai 16, #苏麦10号Sumai 10
氮高效 NUR-H ≥50 4 #淮麦35 Huaimai 35, 瑞华520 Ruihua 520, 冠麦1号Guanmai 1, 江麦919 Jiangmai 919
睢宁 Suining
氮中效 NUR-M 40-50 13 中育麦1211 Zhongyumai 1211, #保麦5号 Baomai 5, 烟农19 Yannong 19, 烟农999 Yannong 999, #淮麦33 Huaimai 33, 保麦6号 Baomai 6, 徐麦9158 Xumai 9158, #山农20 Shannong 20, 新麦26 Xinmai 26, 鄂麦596 Emai 596, 连麦7号 Lianmai 7, 淮麦32 Huaimai 32, 徐麦33 Xumai 33
氮低效 NUR-L ≤40 6 明麦1号 Mingmai 1, 济麦22 Jimai 22, #保麦2号 Baomai 2, #鄂麦580 Emai 580, 郑麦9023 Zhengmai 9023, 安农0711 Annong 0711
2017-2018 扬州 Yangzhou 氮高效 NUR-H ≥50 2 #扬麦25 Yangmai 25, #宁麦21 Ningmai 21
氮中效 NUR-M 40-50 6 苏麦11 Sumai 11, 华麦7号 Huamai 7, 浩麦1号 Haomai 1, 扬麦16 Yangmai 16, #扬麦13 Yangmai 13, 扬辐麦1025 Yangfumai 1025
氮低效 NUR-L ≤40 16 #宁麦13 Ningmai 13, 宁麦22 Ningmai 22, 安农1124 Annong 1124, 苏麦188 Sumai 188, #扬辐麦2054 Yangfumai 2054, 镇麦11 Zhenmai 11, #生选6号 Shengxuan 6, #宁麦23 Ningmai 23, #苏麦10号Sumai 10, 扬麦20 Yangmai 20, 华麦6号 Huamai 6, 扬麦22 Yangmai 22, 扬麦21 Yangmai 21, 扬麦23 Yangmai 23, 扬辐麦4号 Yangfumai 4, 镇麦12号 Zhenmai 12
睢宁 Suining 氮高效 NUR-H ≥50 2 #淮麦35 Huaimai 35, 郑麦9023 Zhengmai 9023
氮中效 NUR-M 40-50 7 安农0711 Annong 0711, 徐麦33 Xumai 33, #保麦5号Baomai 5, 明麦1号 Mingmai 1, 济麦22 Jimai 22, #山农20 Shannong 20, #淮麦33 Huaimai 33
氮低效 NUR-L ≤40 14 #保麦2号Baomai 2, 烟农19 Yannong 19, 徐麦9158 Xumai 9158, 冠麦1号 Guanmai 1, 瑞华520 Ruihua 520, 江麦919 Jiangmai 919, 淮麦32 Huaimai 32, 保麦6号Baomai 6, 中育麦1211 Zhongyumai 1211, 鄂麦596 Emai 596, #鄂麦580 Emai 580, 烟农999 Yannong 999, 新麦26 Xinmai 26, 连麦7号Lianmai 7

Table 2

Differences in yield and its components among different NUR groups"

Variety type
NUR (%)
Grain yield
(kg hm-2)
Spike number (×104 hm-2)
Grains per spike
1000-grain weight (g)
2016-2017 扬州
氮高效NUR-H 52.4±1.9 a 7439±321 a 362±23 a 44.8±5.2 a 48.6±4.3 a
氮中效 NUR-M 43.2±1.7 b 6530±425 b 330±29 a 43.7±6.1 a 47.4±4.5 a
氮低效 NUR-L 34.9±2.3 c 5410±662 c 294±25 b 42.3±4.2 a 45.7±3.6 a
范围 Range 31.4-55.8 4158-7949 253-400 38.2-50.3 41.1-57.3
平均值 Mean 43.55 6470 331 43.0 47.3
氮高效 NUR-H 52.4±1.4 a 9064±230 a 513±40 a 40.0±1.8 a 46.6±2.6 a
氮中效 NUR-M 46.2±2.4 b 8564±425 a 500±36 ab 40.1±4.3 a 45.2±1.9 a
氮低效 NUR-L 36.6±2.1 c 7084±767 b 434±53 b 37.4±3.3 a 47.1±2.1 a
范围 Range 33.5-53.5 6186-9370 373-563 33.1-48.8 41.6-50.5
平均值 Mean 44.44 8252 485 39.4 46.0
2017-2018 扬州
氮高效 NUR-H 50.8±0.7 a 6964±578 a 433±29 a 41.6±0.9 a 39.9±1.7 a
氮中效 NUR-M 42.8±2.2 b 6397±462 ab 402±20 ab 43.5±3.3 a 39.2±3.1 a
氮低效 NUR-L 37.1±2.3 c 5806±478 b 383±24 b 42.6±3.2 a 38.0±2.7 a
范围 Range 38.9-53.6 4878-7373 324-454 36-47.5 34.2-44.4
平均值 Mean 39.7 6070 393 42.8 38.5
氮高效 NUR-H 51.3±0.8 a 7097±101 a 505±2.8 a 37.6±0.7 a 41.3±0.6 a
氮中效 NUR-M 41.7±1.6 b 7114±373 a 495±25 a 36.6±3.7 a 42.0±3.5 a
氮低效 NUR-L 31.9±4.1 c 6249±473 b 444±38 b 36.9±1.5 a 39.7±3.2 a.
范围 Range 5237-7860 33.5-53.5 394-545 32.8-43.9 35.4-46.5
平均值 Mean 6533 36.27 463 37.0 40.8

Fig. 2

Relationships between grain yield and NUR in different wheat cultivars * and ** indicate a significant difference between types of cultivars at P < 0.05 and P < 0.01, respectively."

Fig. 3

Relationships of NUR with each yield components in different wheat cultivars * indicates a significant difference between types of cultivars at P < 0.05."

Fig. 4

Differences in the stem and tiller number at different stages among different NUR cultivars Bars labelled with different letters are significantly different among different NUR groups at P < 0.05. AS: anthesis stage; Other abbreviations are the same as those given in Fig. 1 and Table 1."

Table 3

Correlation analysis between NUR and the parameters of population quality in different wheat cultivars"

Growth stage
2016-2017 2017-2018
拔节期 EL 茎蘖数Stem and tiller number (×104 hm-2) 0.781* 0.605* 0.166 0.223
孕穗期 BS 叶面积指数 LAI 0.765* 0.803* 0.350 0.353
干物质积累量 DMA (kg hm-2) 0.862** 0.701* 0.632* 0.609*
茎蘖数 Stem and tiller number (×104 hm-2) 0.779* 0.625* 0.799* 0.637*
开花期AS 叶面积指数 LAI 0.749* 0.886** 0.568* 0.171
干物质积累量 DMA (kg hm-2) 0.903** 0.717* 0.697* 0.801*
茎蘖数 Stem and tiller number (×104 hm-2) 0.760* 0.619* 0.637* 0.708*
乳熟期 MR 叶面积指数 LAI 0.554* 0.800* 0.536* 0.684*
成熟期 MS 干物质积累量 DMA (kg hm-2) 0.916** 0.802* 0.727* 0.785*
茎秆+叶鞘干物质积累量DMA in stem and leaf sheath (kg hm-2) 0.746* 0.497* 0.753* 0.546*
叶片干物质积累量 DMA in leaf blade (kg hm-2) 0.834* 0.610* 0.572* 0.739*
颖壳+穗轴干物质积累量DMA in rachis and glumes (kg hm-2) 0.842* 0.610* 0.303 0.575*
花后干物质积累量Post-anthesis dry matter (kg hm-2) 0.708* 0.743* 0.739* 0.858*
干物质转运量Dry matter remobilization (kg hm-2) 0.223 0.475 0.529* 0.317
收获指数 Harvest index -0.145 0.222 0.156 -0.093

Fig. 5

Differences in fertile tiller percentage among different NUR cultivars Bars labelled with different letters are significantly different among different NUR groups at P < 0.05."

Fig. 6

Differences in LAI at each stage among different NUR cultivars Bars labelled with different letters are significantly different among different NUR groups at P < 0.05. Abbreviations are the same as those given in Fig. 1, Table 1, and Fig. 4."

Table 4

Differences in dry matter accumulation at main stages among different NUR groups"

Variety type
干物质积累量 Dry matter accumulation (kg hm-2)
孕穗期 Booting 开花期 Anthesis 成熟期 Maturity
2016-2017 扬州
氮高效 NUR-H 6253±430 a 12728±289 a 18664±617 a
氮中效 NUR-M 4741±566 b 11041±853 b 16121±1566 b
氮低效 NUR-L 4183±636 b 9284±1028 c 13301±1360 c
氮高效 NUR-H 8958±418 a 13037±1015 a 18954±1087 a
氮中效 NUR-M 8547±582 a 11683±1092 a 17505±1293 a
氮低效 NUR-L 7488±478 b 10104±868 b 14859±1201 b
2017-2018 扬州
氮高效 NUR-H 9134±328 a 12372±664 a 16498±790 a
氮中效 NUR-M 8655±278 ab 11279±861 ab 14981±693 b
氮低效 NUR-L 8099±494 b 10335±810 b 13794±941 b
氮高效 NUR-H 7984±526 a 11704±604 a 16342±332 a
氮中效 NUR-M 7235±752 ab 10295±966 b 14581±1147 b
氮低效 NUR-L 6625±744 b 9195±976 b 13260±1425 b

Table 5

Differences in dry matter remobilization, post-anthesis dry matter accumulation and harvest index among different NUR groups"

Variety type
Dry matter remobilization
(kg hm-2 )
Post-anthesis dry matter
accumulation (kg hm-2 )
Harvest index
2016-2017 扬州
氮高效 NUR-H 1448±299 a 6038±539 a 0.35±0.01 a
氮中效 NUR-M 1660±220 a 4889±554 b 0.36±0.02 a
氮低效 NUR-L 1369±366 a 4478±849 b 0.35±0.01 a
氮高效 NUR-H 3147±213 a 5916±269 a 0.42±0.02 a
氮中效 NUR-M 2743±539 a 5821±528 a 0.44±0.02 a
氮低效 NUR-L 2431±490 a 4778±496 b 0.42±0.02 a
2017-2018 扬州
氮高效 NUR-H 2010±251 a 4126±155 a 0.37±0.01 a
氮中效 NUR-M 1719±360 a 3701±348 ab 0.36±0.01 a
氮低效 NUR-L 1604±437 a 3459±386 b 0.37±0.02 a
氮高效 NUR-H 1768±290 a 4558±391 a 0.38±0.01 a
氮中效 NUR-M 1464±370 a 4243±417 ab 0.39±0.01 a
氮低效 NUR-L 1260±184 a 3923±379 b 0.39±0.01 a

Fig. 7

Relationships of dry matter accumulation at maturity and after anthesis with NUR in the tested cultivars * indicate significant correlation at the 0.05 probability level."

Table 6

Differences in dry matter accumulation of vegetative organs at maturity among different NUR groups"

Variety type
干物质积累量Dry matter accumulation (kg hm-2)
Stem and leaf sheath
Leaf blade
Rachis and glumes
2016-2017 扬州
氮高效 NUR-H 5421±276 a 1185±169 a 2268±234 a
氮中效 NUR-M 4598±520 b 1051±169 ab 1980±302 ab
氮低效 NUR-L 4001±629 b 895±176 b 1742±281 b
氮高效 NUR-H 5787±794 a 2296±453 a 2984±410 a
氮中效 NUR-M 5262±518 ab 2086±411 a 2704±423 a
氮低效 NUR-L 4682±427 b 1487±264 b 2496±327 a
2017-2018 扬州
氮高效 NUR-H 6405±275 a 1574±183 a 1770±217 a
氮中效 NUR-M 5872±708 a 1425±295 a 1722±527 a
氮低效 NUR-L 5679±592 a 1338±146 a 1374±243 b
氮高效 NUR-H 6171±754 a 1612±183 a 1632±201 a
氮中效 NUR-M 5615±716 ab 1528±237 ab 1571±190 ab
氮低效 NUR-L 4926±735 b 1266±195 b 1430±221 b
[1] Liu H, Wang Z H, Yu R, Li F C, Li K Y, Cao H B, Yang N, Li M H, Dai J, Zan Y L, Li Q, Xue C, He G, Huang D L, Huang M, Liu J S, Qiu W H, Zhao H B, Mao H . Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric Ecosyst Environ, 2016,224:1-11.
[2] 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪 . 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015,48:2569-2579.
Wang X C, Wang X H, Xiong S P, Ma X M, Ding S J, Wu K Y, Guo J B . Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen. Sci Agric Sin, 2015,48:2569-2579 (in Chinese with English abstract).
[3] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Current status and improvement of fertilizer utilization rate of main grain crops in China. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[4] 何文寿, 储燕宁, 王彦才, 杨发 . 不同基因型小麦氮营养效率的差异. 宁夏农学院学报, 1997,18(4):29-34.
He W S, Chu Y N, Wang Y C, Yang F . Differences in nitrogen nutrition efficiency between different genotypes of wheat. J Ningxia Agric Coll, 1997,18(4):29-34 (in Chinese).
[5] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明 . 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49:2267-2279.
Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M . Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Sci Agric Sin, 2016,49:2267-2279 (in Chinese with English abstract).
[6] 李继云, 刘秀娣, 周伟, 孙建华, 童依平, 刘文杰, 李振声, 王培田, 姚树江 . 有效利用土壤营养元素的作物育种新技术研究. 中国科学(B辑), 1995,25:41-48.
Li J Y, Liu X D, Zhou W, Sun J H, Tong Y P, Liu W J, Li Z S, Wang P T, Yao S J . Study on new techniques of crop breeding for effective utilization of soil nutrients. Sci China (Ser B), 1995,25:41-48 (in Chinese).
[7] 李淑文, 文宏达, 周彦珍, 李雁鸣, 肖凯 . 不同氮效率小麦品种氮素吸收和物质生产特性. 中国农业科学, 2006,39:1992-2000.
Li S W, Wen H D, Zhou Y Z, Li Y M, Xiao K . Characterization of nitrogen uptake and dry matter production in wheat varieties with different N efficiency. Sci Agric Sin, 2006,39:1992-2000 (in Chinese with English abstract).
[8] 张洋, 张继, 强晓敏, 翟丙年, 王朝辉 . 不同氮效率基因型冬小麦生理特征的比较研究. 植物营养与肥料学报, 2010,16:1319-1324.
Zhang Y, Zhang J, Qiang X M, Zhai B N, Wang Z H . Comparative study on physiological characteristics in winter wheat with different nitrogen use efficiency. Plant Nutr Fert Sci, 2010,16:1319-1324 (in Chinese with English abstract).
[9] 韩胜芳, 李淑文, 吴立强, 文宏达, 肖凯 . 不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制. 应用生态学报, 2007,18:807-812.
Han S F, Li S W, Wu L Q, Wen H D, Xiao K . Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen. Chin J Appl Ecol, 2007,18:807-812 (in Chinese with English abstract).
[10] 丁锦峰, 成亚梅, 黄正金, 李春燕, 郭文善, 朱新开 . 稻茬小麦不同氮效率群体花后物质生产与衰老特性差异分析. 中国农业科学, 2015,48:1063-1073.
Ding J F, Cheng Y M, Huang Z J, Li C Y, Guo W S, Zhu X K . Difference analysis of post-anthesis matter production and senescence characteristics among different nitrogen efficiency populations in wheat following rice. Sci Agric Sin, 2015,48:1063-1073 (in Chinese with English abstract).
[11] 吕伟仙, 葛滢, 吴建之, 常杰 . 植物中硝态氮、氨态氮、总氮测定方法的比较研究. 光谱学与光谱分析, 2004,2:204-206.
Lyu W X, Ge Y, Wu J Z, Chang J . Comparative study on determination methods of nitrate nitrogen, ammonia nitrogen and total nitrogen in plants. Spectroscopy Spectral Anal, 2004,2:204-206 (in Chinese).
[12] Zhang M M, Dong B D, Qiao Y Z, Shi C H, Yang H, Wang Y K, Liu M Y . Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China plain. J Integr Agric, 2018,17:1194-1206.
[13] 李朝苏, 吴晓丽, 汤永禄, 李俊, 马孝玲, 李式昭, 黄明波, 刘淼 . 小麦产量对中后期氮素胁迫的响应及品种间差异. 作物学报, 2019,45:1260-1269.
Li C S, Wu X L, Tang Y L, Li J, Ma X L, Li S Z, Huang M B, Liu M . Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage. Acta Agron Sin, 2019,45:1260-1269 (in Chinese with English abstract).
[14] Lucie B, Raphaël C, David S, Sokrat S, Alexandra M, Dario F, Fabio M . Performance of eleven winter wheat varieties in a long term experiment on mineral nitrogen and organic fertilization. Field Crops Res, 2016,191:111-122.
[15] Dai X, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M G . Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J, 2017,5:541-552.
[16] 魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张平, 王磐, 张安静 . 施氮对不同小麦品种干物质分配、氮素吸收和产量的影响. 麦类作物学报, 2012,32:1134-1138.
Wei Y L, Wang B L, Li R G, Jiang H L, Zhang P, Wang P, Zhang A J . Effects of nitrogen fertilizer application on distribution of dry material, assimilation of nitrogen and yield of different wheat varieties. J Triticeae Crops, 2012,32:1134-1138 (in Chinese with English abstract).
[17] 吴金芝, 黄明, 王志敏, 李友军, 付国占, 陈明灿 . 极端晚播对小麦籽粒产量、氮素吸收利用和籽粒蛋白质含量的影响. 应用生态学报, 2018,29:185-192.
Wu J Z, Huang M, Wang Z M, Li Y J, Fu G Z, Chen M C . Effects of extremely-late sowing on the grain yield, nitrogen uptake and utilization and grain protein content in winter wheat. Chin J Appl Ecol, 2018,29:185-192 (in Chinese with English abstract).
[18] 张旭, 田中伟, 胡金玲, 修明, 姜东, 戴廷波 . 小麦氮素高效利用基因型的农艺性状及生理特性. 麦类作物学报, 2016,36:1315-1322.
Zhang X, Tian Z W, Hu J L, Xiu M, Jiang D, Dai T B . Agronomic and physiological characteristics of high efficient nitrogen utilization in wheat. J Triticeae Crops, 2016,36:1315-1322 (in Chinese with English abstract).
[19] 李法计, 徐学欣, 肖永贵, 何中虎, 王志敏 . 不同氮素处理对中麦175和京冬17产量相关性状和氮素利用效率的影响. 作物学报, 2016,42:1853-1863.
Li F J, Xu X X, Xiao Y G, He Z H, Wang Z M . Effect of nitrogen on yield related traits and nitrogen utilization efficiency in Zhongmai 175 and Jingdong 17. Acta Agron Sin, 2016,42:1853-1863 (in Chinese with English abstract).
[20] Pal R, Mahajan G, Sardana V, Chauhan B S . Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Res, 2017,206:138-148.
[21] 徐晴, 许甫超, 董静, 董建辉, 秦丹丹, 鲁梦莹, 李梅芳 . 小麦氮素利用效率的基因型差异及相关特性分析. 中国农业科学, 2017,50:2647-2657.
Xu Q, Xu F C, Dong J, Dong J H, Qin D D, Lu M Y, Li M F . Genotypic difference of nitrogen use efficiency of wheat and correlation analysis of the related characters. Sci Agric Sin, 2017,50:2647-2657 (in Chinese with English abstract).
[22] Tian Z W, Li Y, Liang Z H, Guo H, Cai J, Jiang D, Cao W X, Dai T B . Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2016,196:251-260.
[23] Fuentes S I, Allen D J, Ortiz‐Lopez A, Hernández G, . Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot, 2001,52:1071-1081.
[24] 叶利庭, 吕华军, 宋文静, 图尔迪, 沈其荣, 张亚丽 . 不同氮效率水稻生育后期氮代谢酶活性的变化特征. 土壤学报, 2011,48:132-140.
Ye L T, Lyu H J, Song W J, Tu E D, Shen Q R, Zhang Y L . Changes of nitrogen metabolism enzyme activities in late growth stage of rice with different nitrogen efficiency. Acta Pedol Sin, 2011,48:132-140 (in Chinese).
[25] 袁晓磊, 田汇, 高亚军 . 不同氮利用效率小麦氮代谢相关基因的表达特征. 中国土壤与肥料, 2017, ( 1):48-55.
Yuan X L, Tian H, Gao Y J . Seasonal expression of genes related to nitrogen metabolism in wheat with different nitrogen utilization efficiencies. China Soils Fert, 2017, ( 1):48-55 (in Chinese with English abstract).
[1] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[2] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[3] LEI Yong, WANG Zhi-Hui, HUAI Dong-Xin, GAO Hua-Yuan, YAN Li-Ying, LI Jian-Guo, LI Wei-Tao, CHEN Yu-Ning, KANG Yan-Ping, LIU Hai-Long, WANG Xin, XUE Xiao-Meng, JIANG Hui-Fang, LIAO Bo-Shou. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed [J]. Acta Agronomica Sinica, 2021, 47(2): 332-341.
[4] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[7] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[8] WU Chao, LIU Xian-Wen, ZHANG Wei, WANG Qiong, GUO Hua-Chun. Control effects of different potato varieties (lines) and rice-potato rotation system on root-knot nematode [J]. Acta Agronomica Sinica, 2020, 46(9): 1456-1463.
[9] YANG Hai-Bo,ZHANG Jia-Kang,YANG Liu,JIA Yu-Ze, ,LI Fei. Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants [J]. Acta Agronomica Sinica, 2020, 46(6): 950-959.
[10] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[11] Zhi-Hui LIU, Gao-Feng PAN, Wen CHEN, Ming-Guang QIN, Cou-Gui CAO, Chang-Long CHANG, Ming ZHAN. Effects of varieties collocation between crop seasons on the yield and resource use efficiency of maize-late rice cropping in Hubei province [J]. Acta Agronomica Sinica, 2020, 46(12): 1945-1957.
[12] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[13] Hong-Min WANG,Xiao-Fang CHENG,Yan-Ping FAN,Hai-Xia ZHENG,Yao-Wen ZHANG,Xian-Hong ZHANG. Preliminary Study on Resistance of Different Mungbean Varieties to Callosobruchus chinensis (L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1136-1141.
[14] WU Qiu-Hong,CHEN Yong-Xing,LI Dan,WANG Zhen-Zhong,ZHANG Yan,YUAN Cheng-Guo,WANG Xi-Cheng,ZHAO Hong,CAO Ting-Jie,LIU Zhi-Yong. Large Scale Detection of Powdery Mildew Resistance Genes in Wheat via SNP and Bulked Segregate Analysis [J]. Acta Agron Sin, 2018, 44(01): 1-14.
[15] WANG Yi-Fan, QIN Ya-Zhou, FENG Fu-Xue, ZHAO Cai, YU Ai-Zhong, LIU Chang, CHAI Qiang*. Synergistic Effect of Root Interaction and Density on Yield and Yield Components of Wheat/Maize Intercropping System [J]. Acta Agron Sin, 2017, 43(05): 754-762.
Full text



No Suggested Reading articles found!