Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3192-3202.doi: 10.3724/SP.J.1006.2022.11106

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between grain yield and sulfur requirement characteristics of wheat cultivars (lines) in main wheat production regions of China

MU Wen-Yan1(), CHU Hong-Xin1, HUANG Ning1, ZHANG Lu-Lu1, ZHANG Xue-Mei1, GUO Zi-Kang1, HUANG Cui1, SUN Li-Qian1, WEI Lei1, LUO Yi-Nuo1, WANG Zhao-Hui1,2(), LIU Jin-Shan1,2()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi, China
  • Received:2021-11-30 Accepted:2022-05-05 Online:2022-12-12 Published:2022-05-23
  • Contact: WANG Zhao-Hui,LIU Jin-Shan E-mail:17854270855@163.com;w-zhaohui@263.net;jsliu@nwsuaf.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-3);National Key Research and Development Program of China(2018YFD0200400)

Abstract:

The objective of this study is to clarify relationships of sulfur requirement to grain yield, and sulfur concentration of leading wheat cultivars (lines) in main wheat production regions in China, and to provide a strategy for ensuring reasonable sulfur fertilizer application and high yield and good quality. To study the relationships of grain yield, sulfur concentration and sulfur requirement of wheat cultivars (lines) under intensive agricultural cultivation, field experiment were conducted during 2017-2020 in the dryland wheat growing area in Northwest China (Dryland Wheat Regions), wheat-maize rotation area in North China (Wheat-Maize Regions), rice wheat rotation area in South China (Rice-Wheat regions). The grain yield of leading wheat cultivars (lines) in these regions were 4.1-6.9, 6.2-9.3, and 4.4-7.1 t hm-2, with the average of 5.9, 8.1, and 5.9 t hm-2; and the grain sulfur concentration was 1.73-2.27, 1.59-2.01, and 1.42-1.73 g kg-1, with the average of 1.98, 1.78, and 1.53 g kg-1, respectively. There were significant differences in grain sulfur concentration among different wheat cultivars (lines) under the same yield level. The sulfur requirement of leading wheat cultivars (lines) was 3.7-5.3, 3.1-4.2, and 2.1-6.1 kg Mg-1, with the average of 4.5, 3.7, and 3.7 kg Mg-1 in Dryland Wheat Regions, Wheat-Maize Regions, and Rice-Wheat regions, respectively. With the increase in yield from the very low to the very high levels, the sulfur requirement average declined by 16.3% and 23.4% in Dryland Wheat Regions and Rice-Wheat regions, respectively, while increased by 7.6% in Wheat Maize Regions. Moreover, with the increase in sulfur concentration from 1.5 g kg-1 to 1.8 g kg-1, the sulfur requirement of wheat cultivars (lines) increased by 17.2% in Dryland Wheat Regions, when the sulfur concentration was increased from 1.2 g kg-1 to 1.8 g kg-1, the sulfur requirement of wheat cultivars (lines) increased by 21.4% and 116.5% in Wheat-Maize Regions and Rice-Wheat regions, respectively. Therefore, the optimization of sulfur fertilizer application should be based on grain yield, sulfur concentration of wheat cultivars (lines), and soil sulfur supply capacities of soils in specific region.

Key words: different planting regions, leading wheat cultivars (lines), yield, sulfur requirement, sulfur concentration

Table 1

Average value of basic physical and chemical properties of the top 0-20 cm soil over test sites in wheat production regions"

麦区
Wheat region
全氮
TN
(g kg-1)
硝态氮
NN
(mg kg-1)
铵态氮
AN
(mg kg-1)
有效磷
AP (P)
(mg kg-1)
速效钾
AK (K)
(mg kg-1)
pH 有机质
OM
(g kg-1)
有效硫
AS
(mg kg-1)
旱作区DW 0.8±0.04 10.7±8.3 0.2±0.3 11.8±8.2 150±11.9 8.2±0.2 16.8±2.6 8.5±4.0
麦玉区MW 1.1±0.2 20.5±7.4 7.3±6.3 37.7±19.3 191±54.4 7.7±0.8 22.8±4.6 21.7±17.9
稻麦区RW 1.5±0.4 17.3±7.9 12±5.4 26.9±6.3 161±35.0 6.2±0.8 30.5±7.4 28.2±14.1

Table 2

Frequency distribution of grain yield and sulfur concentration for leading wheat cultivars (lines) in main wheat production regions of China"

麦区
Wheat region
产量 Yield 籽粒硫含量 Grain sulfur concentration
产量等级
Yield level
(t hm-2)
样本数(频率%)
Sample size
(frequency %)
产量
Yield
(t hm-2)
硫含量等级
Sulfur concentration
level (g kg-1)
样本数(频率%)
Sample size
(frequency %)
硫含量
Sulfur concentration
(g kg-1)
旱作区
DW
低产VL (<5.3) 10 (9.7) 4.7±0.43 e 低硫VLS (<1.84) 11 (10.7) 1.78±0.03 e
偏低L (5.3-5.7) 18 (17.5) 5.5±0.12 d 偏低硫LS (1.84-1.93) 25 (24.3) 1.87±0.03 d
中产M (5.7-6.1) 32 (31.1) 5.9±0.11 c 中硫MS (1.93-2.03) 34 (33.0) 1.95±0.03 c
偏高H (6.1-6.5) 32 (31.1) 6.2±0.10 b 偏高硫HS (2.03-2.12) 17 (16.5) 2.06±0.03 b
高产VH (≥6.5) 11 (10.7) 6.7±0.12 a 高硫VHS (≥2.12) 16 (15.5) 2.20±0.04 a
麦玉区
MW
低产VL (<7.3) 18 (14.8) 7.0±0.32 e 低硫VLS (<1.66) 17 (13.9) 1.63±0.02 e
偏低L (7.3-7.8) 19 (15.6) 7.6±0.17 d 偏低硫LS (1.66-1.74) 30 (24.6) 1.69±0.02 d
中产M (7.8-8.4) 43 (35.2) 8.1±0.16 c 中硫MS (1.74-1.82) 33 (27.0) 1.77±0.02 c
偏高H (8.4-8.9) 24 (19.7) 8.7±0.16 b 偏高硫HS (1.82-1.90) 27 (22.1) 1.85±0.02 b
高产VH (≥8.9) 18 (14.8) 9.1±0.11 a 高硫VHS (≥1.90) 15 (12.3) 1.94±0.04 a
稻麦区
RW
低产VL (<5.0) 8 (21.1) 4.7±0.24 e 低硫VLS (<1.44) 2 (5.3) 1.44±0.01 e
偏低L (5.0-5.6) 5 (13.2) 5.4±0.22 d 偏低硫LS (1.44-1.50) 12 (31.6) 1.49±0.02 d
中产M (5.6-6.2) 7 (18.4) 6.0±0.14 c 中硫MS (1.50-1.56) 14 (36.8) 1.51±0.02 c
偏高H (6.2-6.9) 16 (42.1) 6.5±0.16 b 偏高硫HS (1.56-1.62) 4 (10.5) 1.58±0.01 b
高产VH (≥6.9) 2 (5.3) 7.1±0.04 a 高硫VHS (≥1.62) 6 (15.8) 1.72±0.05 a

Fig. 1

Relationship between grain sulfur concentration and yield for leading wheat cultivars (lines) in main wheat production regions of China The black solid line and red dashed lines inside the box are the median and the mean values, respectively; the lower and upper edges of the box represent the 25th and 75th percentile, respectively; the lower and upper error line represent the 5th and 95th percentile, respectively; “·” represents above and below the box represent observations < 5th and > 95th percentile; the number below the box error line is the average value of grain sulfur concentration; different lowercase letters indicates significant different at P ≤ 0.05; the integer on the X coordinate axis is the number of samples under each yield grade. Abbreviations are the same as those given in Table 2."

Fig. 2

Fitting relationship between yield, sulfur concentration, and requirement for leading wheat cultivars (lines) in main wheat production in China GSR: grain sulfur requirement; GSC: grain sulfur concentration; Y: yield. Abbreviations are the same as those given in Table 2."

Fig. 3

Relationship between the fitted and the measured grain sulfur requirement for leading wheat cultivars (lines) in main wheat production regions in China ** means significant correlation between the measured sulfur requirement and the fitted sulfur requirement at P ≤ 0.01; the ellipse are the samples with the lower or higher sulfur requirements. Abbreviations are the same as those given in Table 2."

Table 3

Fitted sulfur requirement of different grain yield and sulfur concentration for leading wheat cultivars (lines) in main wheat production regions of China"

麦区
Wheat region
产量水平
Yield level
(t hm-2)
拟合籽粒硫需求量Grain sulfur requirement (kg Mg-1) 均值
Mean value
籽粒硫含量Grain sulfur concentration (g kg-1)
1.2-1.5 1.5-1.8 ≥1.8
旱作区
DW
低产VL (<5.3) 4.5±0.17 5.3±0.41 4.9±0.46
偏低L (5.3-5.7) 4.3±0.17 5.0±0.28 4.7±0.40
中产M (5.7-6.1) 4.2±0.15 4.9±0.35 4.6±0.42
偏高H (6.1-6.5) 4.1±0.13 4.8±0.29 4.5±0.33
高产VH (≥6.5) 3.7±0.34 4.4±0.46 4.1±0.51
均值Mean value 4.2±0.59 4.9±0.61
麦玉区
MW
低产VL (<7.1) 3.1±0.13 3.6±0.14 4.0±0.19 3.6±0.32
偏低L (7.1-7.7) 3.3±0.06 3.7±0.10 4.0±0.18 3.7±0.27
中产M (7.7-8.4) 3.4±0.07 3.7±0.11 4.2±0.21 3.8±0.28
偏高H (8.4-8.9) 3.4±0.07 3.8±0.10 4.1±0.18 3.8±0.26
高产VH (≥8.9) 3.5±0.05 3.9±0.11 4.2±0.20 3.9±0.26
均值Mean value 3.4±0.30 3.7±0.25 4.1±0.26
稻麦区
RW
低产VL (<5.0) 2.9±0.36 3.9±0.45 6.1±0.98 4.3±1.10
偏低L (5.0-5.6) 2.3±0.36 3.6±0.46 5.9±0.69 3.9±1.01
中产M (5.6-6.2) 2.5±0.35 3.5±0.36 5.1±0.15 3.7±0.71
偏高H (6.2-6.9) 2.4±0.39 3.3±0.38 4.4±0.06 3.4±0.81
高产VH (≥6.9) 2.1±0.40 3.1±0.45 4.7±0.49 3.3±0.96
均值Mean value 2.4±1.17 3.5±1.14 5.2±1.18

Table 4

Differences in grain yield, sulfur concentration, and sulfur requirement of high yield wheat cultivars (lines) in main wheat production regions of China"

麦区
Wheat region
品种(系)
Cultivar (line)
产量
Yield
(t hm-2)
籽粒硫含量
Grain sulfur concentration
(g kg-1)
拟合需硫量
Fitting sulfur requirement
(kg Mg-1)
旱作区
DW
LH16-1 6.9 a 1.90 bcd 4.4
隆平203 Longping 203 6.8 a 1.87 cd 4.4
鲁研776 Luyan 776 6.7 a 1.80 d 4.2
濮麦087 Pumai 087 6.7 a 2.01 ab 4.7
济麦78 Jimai 78 6.7 a 1.91 bcd 4.5
郑麦6694 Zhengmai 6694 6.6 a 1.92 bcd 4.5
临Y8222 Lin Y8222 6.6 a 1.95 abc 4.6
泰科麦493 Taikemai 493 6.6 a 1.99 abc 4.7
泛农16 Fanmai 16 6.5 a 2.08 a 5.0
北9 Bei 9 6.5 a 1.99 abc 4.7
麦玉区
MW
BC15PT117 9.3 a 1.74 bc 3.9
潍麦1711 Weimai 1711 9.2 a 1.83 ab 4.0
TKM0311 9.2 a 1.75 bc 3.9
衡H165171 Heng H165171 9.2 a 1.91 a 4.1
衡麦176001 Hengmai 176001 9.1 a 1.73 bc 3.9
中麦6079 Zhongmai 6079 9.1 a 1.68 c 3.8
中麦7083 Zhongmai 7083 9.1 a 1.84 ab 4.0
LS2371 9.1 a 1.63 c 3.7
TKM6007 9.0 a 1.90 a 4.1
LH1703 9.0 a 1.84 ab 4.0
稻麦区
RW
扬17G83 Yang 17G83 7.1 a 1.53 a 2.8
信麦179 Xinmai 179 7.0 a 1.51 a 2.8
华麦17P24 Huamai 17P24 6.9 a 1.52 a 2.8
绵麦907 Mianmai 907 6.7 a 1.45 a 2.5
华麦1062 Huamai 1062 6.7 a 1.50 a 2.8
扬辐麦5054 Yangfumai 5054 6.6 a 1.49 a 2.8
漯麦163 Luomai 163 6.6 a 1.58 a 3.2
宁麦1710 Ningmai 1710 6.6 a 1.54 a 3.0
扬15-133 Yang 15-133 6.6 a 1.50 a 2.8
T60279 6.6 a 1.46 a 2.6
[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. p 377.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistic Press, 2020. p 377. (in Chinese)
[2] Tea I, Genter T, Naulet N, Boyer V, Lummerzheim M, Kleiber D. Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing propertie. Cereal Chem, 2004, 81: 759-766.
doi: 10.1094/CCHEM.2004.81.6.759
[3] Tea I, Genter T, Naulet N, Lummerzheim M, Kleiber D. Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J Agric Food Chem, 2007, 87: 2853-2859.
[4] Zhao F, Hawkesford M, McGrath S. Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci, 1999, 30: 1-17.
doi: 10.1006/jcrs.1998.0241
[5] Zhao F, Salmon S E, Withers P J A, Monaghan J M, Evans E J, Shewry P R, McGrath S P. Variation in the bread making quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J Cereal Sci, 1999, 30: 19-31.
doi: 10.1006/jcrs.1998.0244
[6] Carciochi W D, Divito G A, Fernández L A, Echeverría H E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J Plant Nutr, 2017, 40: 1231-1242.
doi: 10.1080/01904167.2016.1187740
[7] 王丽, 王朝辉, 郭子糠, 陶振魁, 郑洺钧, 黄宁, 高志源, 张欣欣, 黄婷苗. 黄土高原不同地点小麦籽粒矿质元素的含量差异. 中国农业科学, 2020, 53: 3527-3540.
Wang L, Wang Z H, Guo Z K, Tao Z K, Zheng M J, Huang N, Gao Z Y, Zhang X X, Huang T M. Differences of main nutrient concentration in wheat grain between typical locations of the loess plateau. Sci Agric Sin, 2020, 53: 3527-3540. (in Chinese with English abstract)
[8] Jagmandeep D, Sulochana D, Tyler L, Bruno F, Peter O, Raun W. In-season application of nitrogen and sulfur in winter wheat. Agrosyst Geosci Environ, 2019, 2: 180047.
[9] 韩占江, 王伟华. 硫对小麦产量和品质的影响. 耕作与栽培, 2005, (6): 6-7.
Han Z J, Wang W H. Effects of sulfur on yield and quality of wheat. Tillage Cult, 2005, (6): 6-7. (in Chinese)
[10] 朱云集, 沈学善, 李国强, 郭天财. 硫吸收同化分配及其对小麦产量和品质影响的研究进展. 麦类作物学报, 2005, 25: 134-138.
Zhu Y J, Shen X S, Li G Q, Guo T C. Advance in sulphur uptake, assimilation, distribution and its effects on yield and quality of wheat (Triticum aestivum L.). J Triticeae Crops, 2005, 25: 134-138. (in Chinese with English abstract)
[11] 罗来超, 王朝辉, 惠晓丽, 张翔, 马清霞, 包明, 赵岳, 黄明, 王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响. 作物学报, 2018, 44: 886-896.
Luo L C, Wang Z H, Hui X L, Zhang X, Ma Q X, Bao M, Zhao Y, Huang M, Wang S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of loess plateau. Acta Agron Sin, 2018, 44: 886-896. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00886
[12] 张辉, 朱云集, 田文仲, 谢迎新. 不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响. 植物营养与肥料学报, 2011, 17: 838-844.
Zhang H, Zhu Y J, Tian W Z, Xie Y X. Effects of sulphur application on accumulations of carbon, nitrogen and sulphur and grain yield of winter wheat under different irrigation conditions. Plant Nutr Fert Sci, 2011, 17: 838-844. (in Chinese with English abstract)
[13] 袁嫚嫚, 邬刚, 耿维, 王家宝, 井玉丹, 孙义祥. 配方肥配施锌肥和硫肥对小麦的提质增效作用. 农业资源与环境学报, 2020, 37: 518-526.
Yuan M M, Wu G, Geng W, Wang J B, Jing Y D, Sun Y X. Combined application of formula, zinc, and sulfur fertilizers to improve the yield and grain quality of wheat. J Agric Resour Environ, 2020, 37: 518-526. (in Chinese with English abstract)
[14] Onur H, Mevlüt A, Mahmut K. Changes in the grain element contents of durum wheat cultivars of turkey registered between 1967-2010. Commun Soil Sci Plant Anal, 2020, 51: 431-439.
doi: 10.1080/00103624.2019.1709487
[15] 王凡, 朱云集, 郭天财, 胡金环, 田文仲, 祝小婕. 不同基因型小麦硫素利用效率研究. 麦类作物学报, 2008, 28: 999-1004.
Wang F, Zhu Y J, Guo T C, Hu J H, Tian W Z, Zhu X J. Genotypic variations of sulfate use efficiency in wheat. J Triticeae Crops, 2008, 28: 999-1004. (in Chinese with English abstract)
[16] 王东, 金士鹏, 孙亮, 张民. 不同小麦品种氮、硫积累特性与子粒品质的关系. 植物营养与肥料学报, 2009, 15: 41-47.
Wang D, Jin S P, Sun L, Zhang M. Relationship between grain quality and the accumulation of nitrogen and sulfur in different wheat cultivars. J Plant Nutr Fert, 2009, 15: 41-47. (in Chinese with English abstract)
[17] 王利, 高祥照, 马文奇, 刘艳华. 中国农业中硫的消费现状、问题与发展趋势. 植物营养与肥料学报, 2008, 14: 1219-1226.
Wang L, Gao X Z, Ma W Q, Liu Y H. Sulphur consumption in Chinese agriculture: situation and outlook. Plant Nutr Fert Sci, 2008, 14: 1219-1226. (in Chinese with English abstract)
[18] 刘崇群. 我国南方土壤硫的状况和对硫肥的需求. 中国农资, 2005, (11): 52-53.
Liu C Q. Status of soil sulfur and requirement for sulfur fertilizer in south China. China Agri-prod News, 2005, (11): 52-53. (in Chinese)
[19] 张文辉, 段平. 我国土壤的供硫现状及其农业效果. 河南化工, 1996, (1): 4-6.
Zhang W H, Duan P. Present situation of soil sulfur supply and its agricultural effect in China. Henan Chem Ind, 1996, (1): 4-6. (in Chinese)
[20] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93. (in Chinese with English abstract)
[21] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin 2020, 53: 4816-4834. (in Chinese with English abstract)
[22] 郭凤芝, 林坤, 葛振勇, 曹光, 李延坤, 刘凤洲, 郭凌云, 李思同.2001-2017 年山东省审定小麦高产品种农艺、产量和品质性状演变分析. 山东农业科学, 2019, 51(3): 16-23.
Guo F Z, Lin K, Ge Z Y, Cao G, Li Y K, Liu F Z, Guo L Y, Li S T. Evolutionary analysis of agronomic, yield and quality traits of approved high-yield wheat cultivars in Shandong province from 2001 to 2017. Shandong Agric Sci, 2019, 51(3): 16-23. (in Chinese with English abstract)
[23] 陈贵菊, 闫璐, 王福玉, 邵敏敏, 黄玲, 赵凯, 杨本洲, 张玉丹, 孙雷明, 王霖. 近10年黄淮冬麦区北片水地区试品种产量及主要农艺性状分析. 山东农业科学, 2021, 53(5): 142-148.
Chen G J, Yan L, Wang F Y, Shao M M, Huang L, Zhao K, Yang B Z, Zhang Y D, Sun L M, Wang L. Analysis on yield and main agronomic traits of winter in the north Huanghe-Huaihe region test in recent 10 years. Shandong Agric Sci, 2021, 53(5): 142-148. (in Chinese with English abstract)
[24] 姚金保, 张鹏, 余桂红, 马鸿翔, 杨学明, 周淼平, 张平平. 长江中下游小麦品种产量稳定性及试点鉴别力分析. 江苏农业科学, 2021, 49(15): 64-70.
Yao J B, Zhang P, Yu G H, Ma H X, Yang X M, Zhou M P, Zhang P P. Analysis on yield stability and pilot discrimination of wheat cultivars in the middle and lower reaches of the Yangtze River. Jiangsu Agric Sci, 2021, 49(15): 64-70. (in Chinese)
[25] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51: 2722-2734.
Huang Q N, Wang Z H, Huang T M, Hou S B, Zhang X, Ma Q X, Zhang X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Sci Agric Sin, 2018, 51: 2722-2734. (in Chinese with English abstract)
[26] 白金顺, 曹卫东, 毕军, 李学敏, 杨璐, 高嵩涓, 熊静. 速效硫肥对冬小麦产量、品质和经济效益的影响. 中国农学通报, 2013, 29(27): 105-110.
Bai J S, Cao W D, Bi J, Li X M, Yang L, Gao S J, Xiong J. Effects of rapid release sulphur fertilizer on grain yield, quality and economic profit for winter wheat. China Agric Sci Bull, 2013, 29(27): 105-110. (in Chinese with English abstract)
[27] 党红凯, 李雁鸣, 孙亚辉, 张馨文, 李瑞奇, 马春英, 孟建, 刘红彬. 超高产冬小麦硫素营养特点的初步研究. 麦类作物学报, 2008, 28: 811-818.
Dang H K, Li Y M, Sun Y H, Zhang X W, Li R Q, Ma C Y, Meng J, Liu H B. Preliminary study on the characteristics of sulfur nutrition in super high-yielding winter wheat. J Triticeae Crops, 2008, 28: 811-818. (in Chinese with English abstract)
[28] 谢瑞芝, 董树亭, 胡昌浩, 王空军. 不同基因型玉米硫素吸收利用差异研究: I. 根系吸收动力学参数与品种对硫肥的响应. 作物学报, 2002, 28: 345-350.
Xie R Z, Dong S T, Hu C H, Wang K J. The difference of sulfate uptake and utilization in genotypes of maize (Zea mays L.): I. Sulfate uptake kinetic parameters and the respondence of variety to sulphur fertilizer. Acta Agron Sin, 2002, 28: 345-350. (in Chinese with English abstract)
[29] 滕险峰. 土壤中硫的组成及其对植物的有效性的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2000.
Teng X F. Composition of Soil Sulphur and Its Availability to Plants. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2000. (in Chinese with English abstract)
[30] 徐成凯, 胡正义, 章钢娅, 邓西海, 曹志洪. 石灰性土壤中硫形态组分及其影响因素. 植物营养与肥料学报, 2001, 7: 416-423.
Xu C K, Hu Z Y, Zhang G Y, Deng X H, Cao Z H. Sulfur speciation and its influencing factors in calcareous soil. Plant Nutr Fert Sci, 2001, 7: 416-423 (in Chinese with English abstract).
[31] 赵玉霞, 李娜, 王文岩, 李雪芳, 周芳, 王林权. 施用硫肥对陕西关中地区冬小麦氮、硫吸收与转运及产量的影响. 植物营养与肥料学报, 2013, 19: 1321-1328.
Zhao Y X, Li N, Wang W Y, Li X F, Zhou F, Wang L Q. Effects of sulfur application rate on the absorption and translocation of nitrogen and sulfur and grain yield of winter wheat in Guanzhong area of Shaanxi. J Plant Nutr Fert, 2013, 19: 1321-1328. (in Chinese with English abstract)
[1] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[2] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties #br# [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[3] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[4] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[5] WANG Hai-Qi, WANG Rong-Rong, JIANG Gui-Ying, YIN hao-Jie, YAN Shi-Jie, CHE Zi-Qiang. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves [J]. Acta Agronomica Sinica, 2023, 49(1): 211-224.
[6] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[7] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[8] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[9] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[10] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[11] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[12] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[13] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[14] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[15] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .