Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 3096-3106.doi: 10.3724/SP.J.1006.2024.42017

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of side-deep fertilization on yield formation and nitrogen absorption of high-quality early indica rice under precision sowing in line and machine planting

JIANG Da-Ren1(), XIONG Ruo-Yu1, WU Jia-Qing1, MAO Fu-Qin1, FENG Jun-Jie1, TAO Lei1, XIE Xiao-Bing1, PAN Xiao-Hua1, ZENG Yong-Jun1, WANG Ya-Liang2, ZENG Yan-Hua1,*()   

  1. 1Jiangxi Agricultural University / Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University / Jiangxi Provincial Key Laboratory of Crop Bio-breeding and High-Efficient Production, Nanchang 330045, Jiangxi, China
    2China National Rice Research Institute, Hangzhou 311401, Zhejiang, China
  • Received:2024-03-18 Accepted:2024-08-15 Online:2024-12-12 Published:2024-09-03
  • Contact: *E-mail: zyh74049501@163.com
  • Supported by:
    National Key Research and Development Program of China(2023YFD2301303);National Natural Science Foundation of China(32272212);Natural Science Foundation of Jiangxi Province(20232ACB205011);Natural Science Foundation of Jiangxi Province(20202ACBL215004);Jiangxi Agricultural University Young Research and Innovation Team(JXAUCXTD004)

Abstract:

As a major grain crop in China, the efficient cultivation of rice is essential to ensure national food security. Side-deep fertilization and precision drill sowing technology are key measures to improve the efficiency of mechanized rice cultivation. This study aims to elucidate the effects of side-deep fertilization on rice yield formation, rice quality, and nitrogen absorption under precision drill sowing and machine planting, providing a theoretical basis for mechanized high-quality rice cultivation in the southern rice region. In 2022-2023, field experiments were conducted using the Wufengyou 286 rice cultivar. The experiments included two factors: mechanical seeding and raising (precision drill sowing (PS) and broadcast sowing (BS)), and fertilization method (side-deep fertilization (SF) and conventional surface fertilization (CK)). The effects of different treatments on seedling quality, machine transplanting quality, yield formation, nitrogen absorption, and rice quality of high-quality early indica rice were investigated. (1) The yield of precision drill sowing with side-deep fertilization was significantly the highest. Compared with conventional surface fertilization, side-deep fertilization increased rice grain yield by 9.97%-19.62%. Compared with broadcast sowing, precision drill sowing increased rice grain yield by 4.32%-6.29%, primarily due to improvements in the effective panicle number and uniformity of the machine-transplanted population. (2) Precision drill sowing significantly improved the quality of seedlings, reducing the missing hill percentage of machine transplanting by 5.6%-6.0%, and improving the uniformity of seedling number transplanted per hill by 22.0%-33.0%. (3) Both side-deep fertilization and precision drill sowing improved the number of tillers at the tillering peak stage. These methods also increased dry matter accumulation and leaf area index during the rice growing period.Side-deep fertilization, compared with conventional fertilization, increased dry matter accumulation at maturity by 15.71%-18.08% and leaf area index by 19.15%-20.78%. Precision drill sowing, compared with broadcast sowing, increased dry matter accumulation at maturity by 4.56%-7.42% and leaf area index by 8.08%-9.88%. (4) During the middle and late rice growth stages (panicle initiation to maturity), precision drill sowing with side-deep fertilization increased nitrogen accumulation. Side-deep fertilization, compared with conventional fertilization, increased nitrogen accumulation at maturity by 22.66%-28.24%. Precision drill sowing, compared with broadcast sowing, increased nitrogen accumulation at maturity by 7.97%-11.76%. (5) Compared with conventional fertilization, side-deep fertilization significantly reduced the chalky grain rate by 10.63%-20.41%, chalkiness by 13.63%-19.62%, and amylose content by 8.08%-10.42%, but increased protein content by 10.98%-11.25%. In conclusion, side-deep fertilization under precision drill sowing and machine planting can improve seedling quality, machine transplanting quality, rice tillering and panicle formation, growth and development, and nitrogen absorption, thereby increasing the yield of high-quality early indica rice. Additionally, while the appearance quality of rice was improved, the protein content of rice was also increased.

Key words: mechanized transplanting, side deep fertilization, precision drilling sowing, early indica rice, yield, nitrogen absorption

Fig. 1

Seed distribution of precision drill and broadcast sowing PS: precision drill sowing; BS: broadcast sowing."

Table 1

Effect of side deep fertilization on yield and its components under precision sowing in line & machine planting"

年份
Year
施肥方式Fertilization method 播种育秧方式
Sowing method
有效穗数
Effective panicle
(×104 hm-2)
每穗粒数
Grains per
spike
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
2022 SF PS 398.1 a 133.3 a 75.7 a 24.7 a 9.45 a
BS 379.6 b 135.7 a 77.0 a 24.6 a 9.08 b
CK PS 351.9 c 129.0 a 77.2 a 24.9 a 7.92 c
BS 333.3 d 131.9 a 75.5 a 24.8 a 7.57 d
2023 SF PS 407.4 a 129.3 a 80.5 a 24.4 a 9.55 a
BS 385.8 b 130.0 a 79.7 a 24.5 a 9.09 b
CK PS 367.3 c 130.1 a 79.5 a 24.5 a 8.18 c
BS 336.4 d 130.3 a 79.2 a 24.6 a 7.59 d
方差分析
ANOVA
Y * * ** * *
F ** ns ns ns **
S ** ns ns ns **
Y×F ns * ns ns ns
Y×S ns ns ns ns ns
F×S ns ns ns ns ns
Y×F×S ns ns ns ns ns

Table 2

Effects of different sowing methods on seedling quality"

年份
Year
播种育秧
方式
Sowing method
叶龄
Leaf age
株高
Plant height
(cm)
平均根长
Average root
length
(cm plant-1)
根数
Root number
(plant-1)
茎叶干重
Stem and leaf
dry weight
(g plant-1)
根干重
Root dry weight
(g plant-1)
茎基宽
Stem base width
(cm)
2022 PS 3.5 a 18.1 a 5.9 a 10.1 a 0.4 a 0.06 a 0.32 a
BS 3.3 b 16.1 b 5.0 b 9.7 b 0.3 b 0.04 b 0.24 b
2023 PS 3.6 a 17.7 a 6.8 a 11.7 a 0.5 a 0.07 a 0.34 a
BS 3.4 b 16.4 b 5.6 b 10.3 b 0.4 b 0.06 b 0.27 b
方差分析ANOVA Y ** ns ** ** * * **
S ** ** ** ** ** ** **
Y×S ns ns ns ** ns ns ns

Table 3

Effects of different sowing methods on the quality of machine transplanting"

年份
Year
播种育秧方式
Sowing method
漏秧率
Missing hill percent (%)
机插苗数均匀度
ESNT
2022 PS 4.7 b 54.3 a
BS 10.3 a 44.5 b
2023 PS 5.3 b 60.2 b
BS 11.3 a 45.1 a
方差分析
ANOVA
Y ns ns
S ** **
Y×S ns ns

Fig. 2

Effects of side deep fertilization on tillering dynamics and productive tiller percentage under precision sowing in line & machine planting Treatments are the same as those given in Table 1. A, B are tillering dynamics of different treatments in 2022 and 2023, respectively; C, D are productive tiller percentage of different treatments in 2022 and 2023, respectively. Values are mean ± SD (n = 3). Different lowercase letters indicate significant differences between treatments at the same growth stage at the 0.05 probability level."

Fig. 3

Effect of side deep fertilization on leaf area index under the precision sowing in line & machine planting Treatments are the same as those given in Table 1. A, B are leaf area index of different treatments in 2022 and 2023, respectively. TS: tillering stage; PI: panicle initiation stage; HS: heading stage; MS: maturity stage. Values are mean ± SD (n = 3). Different lowercase letters indicate significant differences between treatments at the same growth stage at the 0.05 probability level."

Fig. 4

Effect of side deep fertilization on dry matter accumulation under precision sowing in line & machine planting Abbreviations are the same as those given in Fig. 3; treatments are the same as those given in Table 1. A, B are dry matter accumulation of different treatments in 2022 and 2023, respectively. Values are mean ± SD (n = 3). Different lowercase letters indicate significant differences between treatments at the same growth stage at the 0.05 probability level."

Fig. 5

Effect of side deep fertilization on nitrogen absorption under precision sowing in line & machine planting Abbreviations are the same as those given in Fig. 3. Treatments are the same as those given in Table 1. A, B are the nitrogen accumulation of different treatments in 2022 and 2023, respectively. Values are mean ± SD (n = 3). Different lowercase letters indicate significant differences between treatments at the same growth stage at the 0.05 probability level."

Table 4

Effect of side deep fertilization on rice quality under precision sowing in line & machine planting (%)"

年份
Year
施肥方式Fertilization method 播种育秧
方式
Sowing method
糙米率
BRR
精米率
MRR
整精米率
HRR
垩白粒率
CR
垩白度
CD
直链淀粉
含量
AC
蛋白质含量
PC
2022 SF PS 80.1 a 64.4 a 51.1 a 13.1 b 4.1 b 13.5 b 8.66 a
BS 80.2 a 64.3 a 52.9 a 13.8 b 4.5 b 13.8 b 8.46 a
CK PS 79.8 a 65.1 a 50.1 a 15.0 a 5.3 a 14.7 a 7.67 b
BS 79.9 a 64.9 a 51.4 a 15.1 a 5.4 a 15.0 a 7.56 b
2023 SF PS 78.4 a 66.2 a 53.1 a 9.3 b 2.9 b 14.0 b 8.77 a
BS 79.1 a 64.6 a 52.3 a 9.8 b 2.8 b 13.5 b 8.54 a
CK PS 78.2 a 65.1 a 52.6 a 11.7 a 3.2 a 15.2 a 7.89 b
BS 77.6 a 65.8 a 53.7 a 12.3 a 3.4 a 15.5 a 7.67 b
方差分析
ANOVA
Y ** ns ns ** ** * ns
F ns ns ns ** ** ** **
S ns ns ns ns ns ns ns
Y×F ns ns ns ns * ns ns
Y×S ns ns ns ns ns ns ns
F×S ns ns ns ns ns ns ns
Y×F×S ns ns ns ns ns ns ns
[1] 孙永飞, 严力蛟, 梁尹明. 水稻生产中的农田生态问题与可持续发展对策. 中国农学通报, 2005, 21(6): 358-362.
Sun Y F, Yan L J, Liang Y M. Problems and countermeasures for sustainable rice production. Chin Agric Sci Bull, 2005, 21(6): 358-362 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.0506358
[2] 蒋红荣. 水稻种植机械化技术现状及发展特征. 广西农业机械化, 2023, (2): 20-22.
Jiang H R. Current status and development characteristics of rice planting mechanization technology. Guangxi Agric Mech, 2023, (2): 20-22 (in Chinese).
[3] 宋云生. 不同类型品种水稻钵苗机插产量形成特征及关键栽培技术研究. 扬州大学博士学位论文, 江苏扬州, 2017.
Song Y S. Study on Yield Formation Characteristics and Key Cultivation Techniques of Different Rice Varieties with Nutrition Bowl Mechanical-Transplanting. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[4] 王亚梁, 朱德峰, 张玉屏, 陈惠哲. 水稻智能化育秧与杂交稻精准播种机插技术进展. 中国稻米, 2020, 26(5): 30-33.
doi: 10.3969/j.issn.1006-8082.2020.05.007
Wang Y L, Zhu D F, Zhang Y P, Chen H Z. Progress on rice of intelligent seedling raising and machine transplanting. China Rice, 2020, 26(5): 30-33 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2020.05.007
[5] 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析. 作物学报, 2022, 48: 215-225.
doi: 10.3724/SP.J.1006.2022.02091
Wang Y L, Zhu D F, Zhang Y P, Chen R X, Xiang J, Chen H Z, Chen J H, Wang F. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing. Acta Agron Sin, 2022, 48: 215-225 (in Chinese with English abstract).
[6] 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异. 经济地理, 2018, 38: 201-210.
Kong F B, Guo Q L, Pan D. Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China. Econ Geogr, 2018, 38: 201-210 (in Chinese with English abstract).
[7] 王贵兵. 机械侧深施肥对水稻生长、养分损失及肥料利用率的影响. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Wang G B. Effects of Deep Fertilization on Rice Growth, Nutrient Loss and Fertilizer Use Efficiency on Mechanical Side. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[8] 王晓丹, 向镜, 张玉屏, 张义凯, 王亚梁, 陈惠哲. 水稻机插同步侧深施肥技术进展及应用. 中国稻米, 2020, 26(5): 53-57.
doi: 10.3969/j.issn.1006-8082.2020.05.012
Wang X D, Xiang J, Zhang Y P, Zhang Y K, Wang Y L, Chen H Z. Research advances and application of rice mechanized transplanting with side deep fertilization technology. China Rice, 2020, 26(5): 53-57 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2020.05.012
[9] 张欢, 潘贤, 刘晓霞, 王先挺. 侧深施肥搭配缓控释肥对水稻生长及其产量的影响. 浙江农业科学, 2020, 61: 1323-1325.
doi: 10.16178/j.issn.0528-9017.20200717
Zhang H, Pan X, Liu X X, Wang X T. Effects of side deep fertilization with slow and controlled-release fertilizers on rice growth and its yield. Zhejiang Agric Sci, 2020, 61: 1323-1325 (in Chinese with English abstract).
[10] 王亚梁, 朱德峰, 陈若霞, 方文英, 王晶卿, 向镜, 陈惠哲, 张玉屏, 谌江华. 杂交稻低播量精准条播育秧机插提高群体均匀度和产量的效应分析. 中国农业科学, 2022, 55: 666-679.
doi: 10.3864/j.issn.0578-1752.2022.04.004
Wang Y L, Zhu D F, Chen R X, Fang W Y, Wang J Q, Xiang J, Chen H Z, Zhang Y P, Chen J H. Beneficial effects of precision drill sowing with low seeding rates in machine transplanting for hybrid rice to improve population uniformity and yield. Sci Agric Sin, 2022, 55: 666-679 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.04.004
[11] 朱德峰, 王亚梁, 陈惠哲, 张玉屏, 向镜. 杂交稻精准播种育秧机插技术. 中国稻米, 2021, 27(5): 19-22.
doi: 10.3969/j.issn.1006-8082.2021.05.004
Zhu D F, Wang Y L, Chen H Z, Zhang Y P, Xiang J. Hybrid rice machine transplanting technology with precision sowing and seedling raising. China Rice, 2021, 27(5): 19-22 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.05.004
[12] 方文英, 朱德峰, 怀燕, 陈佳麒, 陈惠哲, 王亚梁. 精准条播育秧提高单季杂交稻机插稀植群体产量的效应分析. 作物杂志, 2023, (5): 124-130.
Fang W Y, Zhu D F, Huai Y, Chen J Q, Chen H Z, Wang Y L. Analysis on the effects of precision drill sowing in machine transplanting for single-season hybrid rice to improve yield of sparsely planted population. Crops, 2023, (5): 124-130 (in Chinese with English abstract).
[13] 桂润飞, 王在满, 潘圣刚, 张明华, 唐湘如, 莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响. 中国农业科学, 2022, 55: 1529-1545.
doi: 10.3864/j.issn.0578-1752.2022.08.005
Gui R F, Wang Z M, Pan S G, Zhang M H, Tang X R, Mo Z W. Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on yield and nitrogen utilization of fragrant rice. Sci Agric Sin, 2022, 55: 1529-1545 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.08.005
[14] 朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52: 4228-4239.
doi: 10.3864/j.issn.0578-1752.2019.23.004
Zhu C H, Zhang Y P, Xiang J, Zhang Y K, Wu H, Wang Y L, Zhu D F, Chen H Z. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Sci Agric Sin, 2019, 52: 4228-4239 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.23.004
[15] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li D J, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02086
[16] 卞景阳, 刘琳帅, 孙兴荣, 刘丽华, 郑桂萍, 尉景顺, 徐林贵. 施肥方式对寒地粳稻产量及品质的影响. 中国稻米, 2019, 25(3): 105-107.
doi: 10.3969/j.issn.1006-8082.2019.03.023
Bian J Y, Liu L S, Sun X R, Liu L H, Zheng G P, Yu J S, Xu L G. Effects of fertilization methods on yield and quality of japonica rice in cold region. China Rice, 2019, 25(3): 105-107 (in Chinese with English abstract).
[17] 李亚娟, 董明辉, 江贻, 顾俊荣, 张文地, 王宇轩. 缓混肥侧深减氮施用对水稻氮肥吸收利用及其产量与品质的影响. 中国农学通报, 2023, 39(36): 14-21.
doi: 10.11924/j.issn.1000-6850.casb2022-1041
Li Y J, Dong M H, Jiang Y, Gu J R, Zhang W D, Wang Y X. Effect of side-deep nitrogen reduction fertilization with slow release fertilizer on nitrogen uptake & utilization and rice yield & quality. Chin Agric Sci Bull, 2023, 39(36): 14-21 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2022-1041
[18] Huang M, Shan S L, Xie X B, Cao F B, Zou Y B. Why high grain yield can be achieved in single seedling machine-transplanted hybrid rice under dense planting conditions? J Integr Agric, 2018, 17: 1299-1306.
[19] 陈建珍, 闫浩亮, 杨前玉, 田小海. 大穗型水稻品种剪叶处理后灌浆结实期源库关系分析. 中国农业气象, 2020, 41: 222-229.
doi: 10.3969/j.issn.1000-6362.2020.04.004
Chen J Z, Yan H L, Yang Q Y, Tian X H. Source-sink relationship during grain filling in response to leaf-cutting treatment for heavy panicle rice cultivars. Chin J Agrometeorol, 2020, 41: 222-229 (in Chinese with English abstract).
[20] 曾贤恩, 魏中伟, 马国辉. 施氮量对超级杂交稻粒叶比及产量的影响. 作物研究, 2017, 31: 377-383.
Zeng X E, Wei Z W, Ma G H. Effect of nitrogen application rate on grain-leaf ratio and yield of super hybrid rice. Crop Res, 2017, 31: 377-383 (in Chinese with English abstract).
[21] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 端木银熙, 孙菊英, 赵品恒, 沙安勤, 周有炎, 李德剑, 肖跃成, 王宝金, 吴爱国. 粳型杂交水稻超高产形成规律与栽培途径的探讨. 杂交水稻, 2010, 25(增刊1): 346-353.
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Duan M Y X, Sun J Y, Zhao P H, Sha A Q, Zhou Y Y, Li D J, Xiao Y C, Wang B J, Wu A G. Formulation of and cultural approach to super-high yielding in japonica hybrid rice. Hybrid Rice, 2010, 25(S1): 346-353 (in Chinese with English abstract).
[22] 伍杂日曲, 郭长春, 李飞杰, 吕旭, 舒川海, 孙永健, 杨志远, 马均. 减氮和机械侧深施肥对机插杂交稻产量及氮素吸收利用的影响. 核农学报, 2022, 36: 1034-1041.
doi: 10.11869/j.issn.100-8551.2022.05.1034
Wu Z R Q, Guo C C, Li F J, Lyu X, Shu C H, Sun Y J, Yang Z Y, Ma J. Effects of nitrogen reduction and mechanical side-deep fertilization on yield and nitrogen uptake and utilization of mechanically transplanted hybrid rice. J Nucl Agric Sci, 2022, 36: 1034-1041 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2022.05.1034
[23] 黄丽芬, 全晓艳, 张蓉, 袁毅, 赵伟, 姜玲玲, 施金琦, 庄恒扬. 光氮及其互作对水稻干物质积累与分配的影响. 中国水稻科学, 2014, 28: 167-176.
Huang L F, Quan X Y, Zhang R, Yuan Y, Zhao W, Jiang L L, Shi J Q, Zhuang H Y. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice. Chin J Rice Sci, 2014, 28: 167-176 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2014.02.008
[24] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38: 1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agron Sin, 2012, 38: 1930-1942 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01930
[25] 杨林生, 张宇亭, 杨柳青, 谢军, 杨敏, 张跃强, 石孝均. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019, (4): 89-95.
Yang L S, Zhang Y T, Yang L Q, Xie J, Yang M, Zhang Y Q, Shi X J. Effects of different nitrogen and potassium rates on dry matter accumulation, transport and yield of rice. Soil Ferl Sci China, 2019, (4): 89-95 (in Chinese with English abstract).
[26] 凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. 中国农业科学, 1986, 19(3): 1-8.
Ling Q H, Yang J C. Studies on ‘grain-leaf ratio’ of population and cultural approaches of high yield in rice plants. Sci Agric Sin, 1986, 19(3): 1-8 (in Chinese with English abstract).
[27] Pan S G, Wen X C, Wang Z M, Ashraf U, Tian H, Duan M Y, Mo Z W, Fan P S, Tang X R. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res, 2017, 203: 139-149.
[28] 王亚梁, 朱德峰, 陈惠哲, 张玉屏, 向镜, 王志刚, 张义凯. 籼粳杂交稻精准条播育秧机插减氮增产的效应研究. 中国水稻科学, 2021, 35: 495-502.
doi: 10.16819/j.1001-7216.2021.210202
Wang Y L, Zhu D F, Chen H Z, Zhang Y P, Xiang J, Wang Z G, Zhang Y K. Effects of precise drill sowing-based seedling raising of indica-japonica hybrid rice for mechanical transplanting on yield increase under nitrogen reduction conditions. Chin J Rice Sci, 2021, 35: 495-502 (in Chinese with English abstract).
[29] 吕腾飞, 谌洁, 马鹏, 代邹, 杨志远, 徐徽, 郑传刚, 马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响. 中国农业科学, 2021, 54: 1410-1423.
doi: 10.3864/j.issn.0578-1752.2021.07.008
Lyu T F, Chen J, Ma P, Dai Z, Yang Z Y, Xu H, Zheng C G, Ma J. Effects of combined application of slow-release nitrogen fertilizer and urea on the nitrogen utilization characteristics in machine- transplanted hybrid rice. Sci Agric Sin, 2021, 54: 1410-1423 (in Chinese with English abstract).
[30] 段然, 汤月丰, 王亚男, 王伟政, 白玲玉, 吴翠霞, 文炯, 曾希柏. 不同施肥方法对双季稻区水稻产量及氮素流失的影响. 中国生态农业学报, 2017, 25: 1815-1822.
Duan R, Tang Y F, Wang Y N, Wang W Z, Bai L Y, Wu C X, Wen J, Zeng X B. Effects of different fertilization modes on rice yield and nitrogen loss in paddy soils under double cropping rice. Chin J Eco-Agric, 2017, 25: 1815-1822 (in Chinese with English abstract).
[31] 邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠. “旺壮重”栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001, 27: 343-350.
Zou Y B, Huang J L, Tu N M, Li H S, Huang S P, Zhang Y Z. Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agron Sin, 2001, 27: 343-350 (in Chinese with English abstract).
[32] 刘晓霞, 潘贤, 张欢. 施肥方式及化肥用量对水稻产量和氮肥利用效率的影响. 中国农学通报, 2020, 36(34): 1-4.
doi: 10.11924/j.issn.1000-6850.casb20200100047
Liu X X, Pan X, Zhang H. Impact of fertilization methods and fertilizer usage on rice yield and nitrogen use efficiency. Chin Agric Sci Bull, 2020, 36(34): 1-4 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20200100047
[33] 赵立军, 颜珊珊, 王宇杰, 张志鹏, 张玉鑫, 陈昌峰, 许春林. 侧深施肥插秧机施肥量对水稻栽培的影响. 农机化研究, 2019, 41(10): 192-197.
Zhao L J, Yan S S, Wang Y J, Zhang Z P, Zhang Y X, Chen C F, Xu C L. The influence of fertilization rate on the rice cultivation by side deep fertilizer transplanter. J Agric Mech Res, 2019, 41(10): 192-197 (in Chinese with English abstract).
[34] 姜恒鑫. 机插同步侧深减施氮肥对优质食味粳稻综合生产力的影响. 扬州大学硕士学位论文, 江苏扬州, 2022.
Jiang H X, Effect of Synchronized Deep Side Application of Nitrogen Fertilizer on Integrated Productivity of High-Quality Palatable Japonica Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[1] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[2] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
[3] WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246.
[4] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jing-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet  [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[5] XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232.
[6] LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43.
[7] DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG-Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173.
[8] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[9] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[10] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[11] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[12] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[13] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[14] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[15] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .