HE Mei1,2,ZHANG Jia-Lei1,FAN Shi-Kai1,MENG Jing-Jing1,WANG Jian-Guo1,GUO Feng1,LI Xin-Guo1,WAN Shu-Bo1,*,YANG Sha1,*
[1] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264. [2] Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira K S, Takebayashi Y, Kojima M, Sakakibara H, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J, 2017, 90: 61–78.
[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-19], http://kns.cnki.net/kcms/detail/46.1068.S.20240119.1548.002.
[4] 万书波, 封海胜, 王秀贞. 花生营养成分综合评价与产业化发展战略研究. 花生学报, 2004, 33(2): 1–6.
[5] 孙海艳, 侯乾, 董文召, 王晶珊, 刘立峰, 雷永. 我国花生品种发展现状. 中国种业, 2022, (7): 15–17. [6] Ding L, Lu Z F, Gao L M, Guo S W, Shen Q R. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci, 2018, 9: 1143.
[7] 顾学花, 孙莲强, 高波, 孙奇泽, 刘辰, 张佳蕾, 李向东. 施钙对干旱胁迫下花生生理特性、产量和品质的影响. 应用生态学报, 2015, 26: 1433–1439.
[8] 武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展. 草业学报, 2018, 27(1): 204–214. [9] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22: 541–563. [10] Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol, 2019, 224: 585–604. [11] Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036. [12] Bin L H, Xu Z L, Chu Y Q, Yan Y, Nie X J, Song W N. Genome-wide analysis of calcium-dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in response to drought stress in wheat. Environ Exp Bot, 2023, 209: 105277. [13] Yu T F, Zhao W Y, Fu J D, Liu Y W, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Xi Y J. Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci, 2018, 9: 651. [14] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143–157. [15] Sirover M A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta, 2011, 1810: 741–751. [16] Rius S P, Casati P, Iglesias A A, Gomez-Casati D F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol, 2008, 148: 1655–1667. [17] Anoman A D, Muñoz-Bertomeu J, Rosa-Téllez S, Flores-Tornero M, Serrano R, Bueso E, Fernie A R, Segura J, Ros R. Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol, 2015, 169: 1619–1637.
[18] 王芳, 陈巧红, 董乐, 王云, 朱国立, 许珊珊, 黄苹苹, 王建颖, 林娟. 蓖麻3-磷酸甘油醛脱氢酶的基因克隆及表达分析. 分子植物育种, 2018, 16: 7965–7974. [19] Simkin A J, Alqurashi M, Lopez-Calcagno P E, Headland L R, Raines C A. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. Plant Physiol, 2023, 192: 2989–3000. [20] Guo L, Devaiah S P, Narasimhan R, Pan X Q, Zhang Y Y, Zhang W H, Wang X M. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell, 2012, 24: 2200–2212. [21] Zeng L F, Deng R, Guo Z P, Yang S S, Deng X P. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics, 2016, 17: 240. [22] Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiol, 2013, 162: 333–346. [23] Zhao X C, Wang J, Xia N, Qu Y W, Zhan Y H, Teng W L, Li H Y, Li W B, Li Y G, Zhao X, et al. Genome-wide identification and analysis of glyceraldehyde-3-phosphate dehydrogenase family reveals the role of GmGAPDH14 to improve salt tolerance in soybean (Glycine max L.). Front Plant Sci, 2023, 14: 1193044.
[24] 石运庆, 王建, 苗华荣, 胡晓辉, 陈静. 不同花生品种芽期抗旱性筛选及其田间验证. 山东农业科学, 2015, 47(2): 34–37.
[25] 王彩, 万勇善, 刘风珍, 张昆. 苗期PEG渗透胁迫条件下花生品种抗旱性的研究. 山东农业科学, 2018, 50(6): 65–71. [26] Jiang C J, Li X L, Zou J X, Ren J Y, Jin C Y, Zhang H, Yu H Q, Jin H. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol, 2021, 21: 64. [27] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078–2079. [28] Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139–140. [29] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890. [30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915. [31] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [32] Yang S, Wang J G, Tang Z H, Li Y, Zhang J L, Guo F, Meng J J, Cui F, Li X G, Wan S B. Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut (Arachis hypogaea L.). Crop J, 2023, 11: 21–32. [33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408. [34] Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200–W204. [35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49. [36] Spitz F, Furlong E E M. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet, 2012, 13: 613–626. [37] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870–1874. [38] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293–W296. [39] Deng Y H, Chen Q J, Qu Y Y. Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants, 2022, 11: 2758. [40] Li Q Z, Hu T, Lu T J, Yu B, Zhao Y. Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis. Dev Cell, 2025, 60: 1423–1438.e8.
[41] 刘小龙, 李霞, 钱宝云, 唐玉婷. 植物体内钙信号及其在调节干旱胁迫中的作用. 西北植物学报, 2014, 34: 1927–1936. [42] Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 2008, 30: 108–113. [43] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19: 1065–1080. [44] Suzuki Y, Ishiyama K, Sugawara M, Suzuki Y, Kondo E, Takegahara-Tamakawa Y, Yoon D K, Suganami M, Wada S, Miyake C, et al. Overproduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase improves photosynthesis slightly under elevated [CO2] conditions in rice. Plant Cell Physiol, 2021, 62: 156–165.
[45] 李敏, 伍国强, 魏明, 刘晨. 植物CDPK在响应逆境胁迫中的作用及机制. 生物工程学报, 2024, 40: 3337–3359. [46] Zou J J, Li X D, Ratnasekera D, Wang C, Liu W X, Song L F, Zhang W Z, Wu W H. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell, 2015, 27: 1445–1460. [47] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005–1024. |
[1] | YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746. |
[2] | LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700. |
[3] | JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811. |
[4] | RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939. |
[5] | WANG Ying-Heng, CUI Li-Li, CAI Qiu-Hua, LIN Qiang, WU Fang-Xi, CHEN Fei-He, XIE Hong-Guang, ZHU Yong-Sheng, CHEN Li-Ping, XIE Hua-An, ZHANG Jian-Fu. Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan [J]. Acta Agronomica Sinica, 2024, 50(12): 2998-3012. |
[6] | ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583. |
[7] | MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582. |
[8] | ZHOU Wen-Qi, QIANG Xiao-Xia, LI Si-Yu, WANG Sen, WEI Wan-Rong. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice [J]. Acta Agronomica Sinica, 2023, 49(11): 3029-3041. |
[9] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[10] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[11] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[12] | ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727. |
[13] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[14] | Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461. |
[15] | ZHANG Xiao-Xiao,PAN Ying-Hong,REN Fu-Li,PU Wei-Jun,WANG Dao-Ping,LI Yu-Bin,LU Ping,LI Gui-Ying,ZHU Li. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum [J]. Acta Agronomica Sinica, 2019, 45(11): 1735-1745. |
|