Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identification and analysis of the NAC gene family in barley (Hordeum vulgare L.) and functional validation of HvNAC38 in salt tolerance

Niu Li1,Wang Yong-Sheng1,Wang Chang-Jie1,Zhang Hong1,Meng Ya-Xiong1,Li Bao-Chun2,Yang Ke1,Ma Xiao-Le1,Yao Li-Rong1,Si Er-Jing1,Wang Hua-Jun1,Wang Jun-Cheng1,*   

  1. 1 Agronomy College, Gansu Agricultural University / State Key Laboratory of Crop Science in Arid Habitats, Lanzhou 730070, Gansu, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2025-06-17 Revised:2025-10-30 Accepted:2025-10-30 Published:2025-11-17
  • Contact: 汪军成, E-mail: wangjc@gsauedu.cn E-mail:3414913449@qq.com
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-05-02A-10), the Gansu Modern Agricultural Industrial Technology System (Wheat Crops) (2025), the Gansu Higher Education Institutions Industrial Support Program Project (2021CYZC-12), the Gansu Longyuan Young Talents Project (GSAU-2023-005), and the Gansu Agricultural University Fuxi Young Talents Program funding (Gaufx-03Y06, Gaufx-04Y011).

Abstract:

The NAC gene family is a key group of plant-specific transcription factors that play essential roles in regulating plant growthdevelopmentand responses to abiotic stress. In this study, we focused on the salt-tolerance candidate gene HORVU3Hr1G014090, identified through previous multi-omics screening in our laboratory. A genome-wide identification and bioinformatics analysis of the NAC gene family in barley were conducted, followed by expression profiling and qRT-PCR validation of all members under salt stress. The subcellular localization of the candidate gene was also determined. Finally, the function of HORVU3Hr1G014090 was validated through overexpression in Arabidopsis thaliana. A total of 116 HvNAC genes were identified in barley, distributed across seven chromosomes. The candidate gene HORVU3Hr1G014090 was designated as HvNAC38. Phylogenetic analysis classified the HvNACs into six subclades, and three gene pairs were identified as segmental duplications: HvNAC19/HvNAC57, HvNAC32/HvNAC85, and HvNAC14/HvNAC58. Physicochemical property analysis showed that HvNAC proteins ranged from 112 to 894 amino acids in length, with molecular weights ranging from 12,782.78 to 99,779.03 Da, isoelectric points from 4.2 to 10.54, instability indices from 21.9 to 70.6, and average hydrophilicity values from ?1.029 to ?0.264. Several stress-related binding motifs were identified, and five conserved domains or superfamilies were found: the NAM domain, PHA03378PTZ00449PHA03052, and PHA03247 superfamilies. A total of 41 cis-acting elements were detected across the HvNACs, and 22 members were found to lack introns. Under salt stress, 107 HvNACs gene were responsive, and the expression patterns of eight selected genes were validated by qRT-PCR, showing general consistency with transcriptome data. Subcellular localization analysis confirmed that HvNAC38 is localized in the nucleusconsistent with in silico predictions. Overexpression of HvNAC38 in Arabidopsis thaliana enhanced salt tolerance, as evidenced by phenotypic and physiological analyses. These findings provide valuable insights into the molecular mechanisms of salt tolerance in barley and offer a theoretical basis for improving.

Key words: NAC, gene family, bioinformatics, stress resistance, salt tolerance, barley (Hordeum vulgare L.)

[1] 王佳丽, 王鹤冰, 杨慧勤, 等. NAC转录因子在植物花发育中的作用. 生物工程学报, 2022, 38: 2687–2699.

Wang J L, Wang H B, Yang H Q, et al. The role of NAC transcription factors in flower development in plants. Chin J Biotechnol, 2022. 38: 2687–2699.

[2] Chen Y E, Xia P G. NAC transcription factors as biological macromolecules responded to abiotic stress: a comprehensive review. Int J Biol Macromol, 2025, 308: 142400. 

[3] 孙利军, 李大勇, 张慧娟, . NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传, 2012, 34: 993–1002.

Sun L J, Li D Y, Zhang H J, et al. Functions of NAC transcription factors in biotic and abiotic stress responses in plants: functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas, 2012, 34: 993–1002. 

[4] Shen S Y, Zhang Q R, Shi Y, et al. Genome-wide analysis of the NAC domain transcription factor gene family in Theobroma cacao. Genes, 2019, 11: 35. 

[5] Chen Q F, Wang Q, Xiong L Z, et al. A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell, 2011, 2: 55–63. 

[6] Jeong J S, Kim Y S, Baek K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185–197. 

[7] Zhu M K, Chen G P, Zhang J L, et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep, 2014, 33: 1851–1863. 

[8] Liu Z Y, Hu L L, Wang X X, et al. TaNAC-5A positively regulates the development of anther in thermo-sensitive male-sterile wheat with Aegilops kotschyi cytoplasm. Plant Physiol Biochem, 2025, 224: 109890. 

[9] Liu S M, Ding X, Li Y, et al. Genome-wide identification of the NAC family genes of adzuki bean and their roles in rust resistance through jasmonic acid signaling. BMC Genomics, 2025, 26: 283. 

[10] Wang C, Song S W, Fu J, et al. The transcription factor OsNAC25 regulates potassium homeostasis in rice. Plant Biotechnol J, 2025, 23: 930–945. 

[11] Li Z G, Yu Q Q, Ma Y, et al. Screening and functional characterization of salt-tolerant NAC gene family members in Medicago sativa L. Front Plant Sci, 2025, 16: 1461735. 

[12] Wang J C, Cui C C, Qi S Y, et al. The NAC transcription factor PagNAC17 enhances salt tolerance in poplar by alleviating photosynthetic inhibition. Plant Physiol Biochem, 2025, 221: 109645. 

[13] Pan Y T, Han T, Xiang Y, et al. The transcription factor ZmNAC84 increases maize salt tolerance by regulating ZmCAT1 expression. Crop J, 2024, 12: 1344–1356. 

[14] Yang S, Hao X H, Xu Y M, et al. Meta-analysis of the effect of saline-alkali land improvement and utilization on soil organic carbon. Life, 2022, 12: 1870. 

[15] He X F, Zhu J K, Gong X H, et al. Advances in deciphering the mechanisms of salt tolerance in Maize. Plant Signal Behav, 2025, 20: 2479513. 

[16] Ma X J, Ouyang Z P, Luo H B, et al. Bacillus velezensis HR6-1 enhances salt tolerance in tomato by increasing endogenous cytokinin content and improving ROS scavenging. Microbiol Res, 2025, 296: 128143. 

[17] Tibesigwa D G, Zhuang W H, Matola S H, et al. Molecular insights into salt stress adaptation in plants. Plant Cell Environ, 2025, 48: 5604–5615. 

[18] Li M, Chen R, Jiang Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333–345. 

[19] Hernandez-Leon S G, Valenzuela-Soto E M. Glycine betaine is a phytohormone-like plant growth and development regulator under stress conditions. J Plant Growth Regul, 2023, 42: 5029–5040. 

[20] Ma J H, Yuan M, Sun B, et al. Evolutionary divergence and biased expression of NAC transcription factors in hexaploid bread wheat (Triticum aestivum L.). Plants, 2021, 10: 382. 

[21] Lu M, Sun Q P, Zhang D F, et al. Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes. Biochem Biophys Res Commun, 2015, 462: 144–150. 

[22] Ramadoss B R, Gangola M P, Gurunathan S. NAC Transcription Factor Family in Rice: Recent Advancements in the Development of Stress-tolerant Rice, in Transcription Factors for Abiotic Stress Tolerance in Plants. Amsterdam: Elsevier, 2020.pp 47–61. 

[23] Singh A K, Sharma V, Pal A K, et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res, 2013, 20: 403–423. 

[24] Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011, 18: 263–276. 

[25] Badr A, El-Shazly H H, Mahdy M, et al. GWAS identifies novel loci linked to seedling growth traits in highly diverse barley population under drought stress. Sci Rep, 2025, 15: 10085. 

[26] Mokarroma N, Uddin M R, Ahmed I M, et al. Multivariate analysis for identifying drought-tolerant barley (Hordeum vulgare L.) genotypes using stress indices. Data Brief, 2025, 59: 111452. 

[27] Xu H W, Chen H, Halford N G, et al. Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.) doubled haploid line. BMC Plant Biol, 2025, 25: 52. 

[28] Murozuka E, Massange-Sánchez J A, Nielsen K, et al. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One, 2018, 13: e0209769. 

[29] Guo R, Zhou J, Ren G X, et al. Physiological responses of linseed seedlings to Iso osmotic polyethylene glycol, salt, and alkali stresses. Agron J, 2013, 105: 764–772. 

[30] Chen Y Y, Wang J C, Yao L R, et al. Combined proteomic and metabolomic analysis of the molecular mechanism underlying the response to salt stress during seed germination in barley. Int J Mol Sci, 2022, 23: 10515. 

[31] Zhang X M, Cao Y Q, Liu M X, et al. Phylogenetic and expression analysis of HSP20 gene family in Rhododendron species of different altitudes. Int J Biol Macromol, 2025, 309: 143125. 

[32] Wang K, Cheng J, Chen J R, et al. Genome-wide identification of pyrabactin resistance 1-like (PYL) gene family under phytohormones and drought stresses in alfalfa (Medicago sativa). BMC Genomics, 2025, 26: 383. 

[33] Cao G H, Guo X L, Yang Y J, et al. RTN family and its response to abiotic stress in Oryza sativa. Sci Rep, 2025, 15: 13134. 

[34] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022–3027. 

[35] Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23: 127–128. 

[36] Chen Y Q, Yuan Y, Jia M Y, et al. Genome-wide identification of the dof gene family and functional analysis of PeSCAP1 in regulating guard cell maturation in Populus euphratica. Int J Mol Sci, 2025, 26: 3798. 

[37] Lin Q H, Shan X, Si Q, et al. Identification of PP2C gene family in moso bamboo (Phyllostachys edulis) and function analysis of PhePP2CA13. Plant Physiol Biochem, 2025, 224: 109929. 

[38] Zhang J W, Chen Y, He J, et al. Genome-wide identification of LACS family genes and functional characterization of CaLACS6/9 in response to cold stress in pepper (Capsicum annuum L.). Agronomy, 2025, 15: 970. 

[39] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408. 

[40] Arcalis E, Stadlmann J, Rademacher T, et al. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol, 2013, 83: 105–117. 

[41] Li J Q, Zhang J, Wang X C, et al. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana. Sci China Life Sci, 2010, 53: 1299–1306. 

[42] Ritchie R J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 2008, 46: 115–126. 

[43] Fritschi F B, Ray J D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 2007, 45: 92–98. 

[44] Johnston B R, Duncan C W, Lawton K, et al. Determination of potassium in plant materials with a flame photometer. J AOAC Int, 1952, 35: 813–816. 

[45] Choi D W, Rodriguez E M, Close T J. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol, 2002, 129: 1781–1787. 

[46] Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125. 

[47] Delgado C, Mora-Poblete F, Ahmar S, et al. Jasmonates and plant salt stress: molecular players, physiological effects, and improving tolerance by using genome-associated tools. Int J Mol Sci, 2021, 22: 3082. 

[48] Zhang C, Wang J, Wenkel S, et al. Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Development, 2018, 145: dev158352. 

[49] Feng H, Duan X Y, Zhang Q, et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol, 2014, 15: 284–296. 

[50] Li Y X, Han S C, Sun X M, et al. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. J Integr Plant Biol, 2023, 65: 918–933. 

[51] Takasaki H, Maruyama K, Kidokoro S, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284: 173–183. 

[52] Lim C, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci, 2015, 16: 15251–15270. 

[53] Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146. 

[54] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681. 

[55] Nabi R B S, Tayade R, Deshmukh R, et al. The stress-induced gene AtDUF569 positively regulates salt stress responses in Arabidopsis thaliana. BMC Plant Biol, 2025, 25: 585. 

[56] Liu X, Guo X, Li T J, et al. OsGSK1 interacts with OsbZIP72 to regulate salt response in rice. Plant J, 2025, 121: e70112. 

[57] Wang S B, Guo J S, Peng Y Y, et al. GmRPN11d positively regulates plant salinity tolerance by improving protein stability through SUMOylation. Int J Biol Macromol, 2025, 294: 139393. 

[58] Zhao J H, Zhang S H, Yu Z C, et al. The transcription factor MdWRKY9 is involved in jasmonic acid-mediated salt stress tolerance in apple. Hortic Res, 2025, 12: uhaf068.

[59] Xu N, Zhang S L, Zhou X M, et al. VvNAC33 functions as a key regulator of drought tolerance in grapevine by modulating reactive oxygen species production. Plant Physiol Biochem, 2025, 224: 109971. 

[60] Wang H C, Wei L, Yu F, et al. The sorghum SbMPK3-SbNAC074 module involved in salt tolerance. Plant Physiol Biochem, 2025, 224: 109981. 

[61] Su P S, Yan J, Li W, et al. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol, 2020, 20: 392. 

[62] Vicuna D. The Role of Peroxidases in the Development of Plants and Their Responses to Abiotic Stresses. PhD Dissertation of Technological University Dublin, Dublin, Ireland, 2005.

[63] Dong L D, Ravelombola W, Weng Y J, et al. Change in chlorophyll content over time well-differentiated salt-tolerant, moderately salt-tolerant, and salt-susceptible cowpea genotypes. HortScience, 2019, 54: 1477–1484. 

[64] Almeida D M, Oliveira M M, Saibo N J M. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol, 2017, 40: 326–345. 

[1] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[2] WANG Bin, MENG Jiang-Yu, QIU Hao-Liang, HE Ya-Jun, QIAN Wei. Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(8): 2100-2110.
[3] FENG Wu-Jian, XIAN Xiao-Qing, ZHANG Xin-Bo, CAO Dan, QIANG Cheng-Kui. Rapid transcriptome and AlphaFold-based identification of classical effector proteins of Magnaporthe oryzae and receptors in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1480-1488.
[4] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[5] ZHOU En-Qiang, MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun, WEI Li-Bin. Analysis of bZIP gene family and identification of seed development candidate genes in pea based on seed development transcriptome [J]. Acta Agronomica Sinica, 2025, 51(4): 914-931.
[6] JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844.
[7] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
[8] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[9] LI Wan, CHANG Zi-Rui, LU Yao, SHEN Ri-Min, ZHAO Yong-Ping, BAI Xiao-Dong. Identification of RAV family in 25 different plant species and expression analysis of RAV genes in potato [J]. Acta Agronomica Sinica, 2025, 51(11): 2944-2957.
[10] WANG Chen, HE Dan, YAO Min, QIU Ping, HE Xin, XIONG Xing-Hua, KANG Lei, LIU Zhong-Song, QIAN Lun-Wen. Transcriptome-based identification of flowering candidate genes and functional characterization of BnaCOR27 in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(10): 2693-2704.
[11] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[12] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[13] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[14] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[15] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!