Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (08): 1491-1496.doi: 10.3724/SP.J.1006.2011.01491

• RESEARCH NOTES • Previous Articles     Next Articles

Microsatellite Variation in Synthetic Hexaploid Wheat

WANG Bian-Yin,ZHAI Jun,HAO Yuan-Feng,LI An-Fei,KONG Ling-Rang*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-01-12 Revised:2011-04-26 Online:2011-08-12 Published:2011-06-13
  • Contact: 孔令让, E-mail: lkong@sdau.edu.cn, Tel: 0538-8249278

Abstract: Microsatellites or simple sequence repeats (SSR) are ubiquitous in organism genomes. Investigation on the SSR variations induced by allopolyploidization is useful to understand the evolution of allopolyploid.In this study, we compared SSR loci using primers specific to A, B, and D genomes in five synthesized hexaploid wheat between tetraploid wheat Langdon and five accessions of Aegilops tauschii. The results showed that 4.0% (5 out of 125) and 4.8% (6 of 125) genomic SSRs on A and B genomes exhibited variations, respectively. A low frequency (2.6%) of variations was observed in the expressed sequence tag (EST)-SSRs located on A/B genomes. This indicated that lower variation existed in functional genes than in non-coding regions, i.e. genomic SSR. In addition, 2.9% (3 of 103) genomic SSRs on D genome showed variations. Sequence analyses indicated that the length of SSRs was mainly due to the variation of the number of repeated units. The microsatellitesequences with disappearance may be more likely to be changed than the ordinary microsatellite sequences.The ubiquitous microsatellites may play an important buffering role to achieve genome stability and plasticity inpolyploidy evolution.

Key words: Synthetic wheat, Ae. tauschii, Microsatellite, Sequence variation, Allopolyploidization

[1]Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225–249
[2]Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. TrendsGenet, 2008, 24: 24–32
[3]Kong L-R(孔令让), Dong Y-C(董玉琛). Studies on the cytogenetics of progenies between Triticum aestivum L. and amphidiploid from Triticum durum–Ae. tauschii. Acta Agron Sin (作物学报), 1997, 23(4): 505–508 (in Chinese)
[4]Hu Y-K(胡英考), Xin Z-Y(辛志勇), Chen X(陈孝), Zhang Z-Y(张增艳), Duan X-Y(段霞瑜). Genetic analysis and gene deduction of powdery milder resistance in T. durum–Ae. tauschii amphidiploids. Acta Genet Sin (遗传学报), 2001, 28(2): 152–157 (in Chinese with English abstract)
[5]Nie L H, Han Z F, Lu L H, Yao Y Y, Sun Q X, Ni Z F. Genomic and genic sequence variation in synthetic hexaploid wheat (AABBDD) as compared to their parental species. Prog Nat Sci, 2008, 18: 533–538
[6]Feldman M, Levy A A. Allopolyploidy-ashaping force in the evolution of wheat genomes. Cytogenet Genome Res, 2005, 109: 250–258
[7]Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103: 346–352
[8]Zhang L Q, Liu D C, Yan Z H, Lan X J, ZhengY L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolyp1oidization of new synthesized hexaploid wheat. Sci China Ser C, 2004, 47: 553–561
[9]Zhang L Q, Sun G L, Yan Z H, Chen Q J, Yuan Z W, Lan X J, Zheng Y L, Liu D C. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J Genet Genomics, 2007, 34: 939–946
[10]Tang Z X, Fu S L, Ren Z L, Zou Y T. Rapid evolution of simple sequence repeat induced by allopolyploidization. J Mol Evol, 2009, 69: 217–228
[11]Friesen T L, Xu S S, Harris M O. Stem rust, tan spot, Stagonospora nodorum blotch and Hessian fly resistance in Langdon Durum–Aegilops tauschii synthetic hexaploid wheat lines. Crop Sci, 2008, 48: 1062–1070
[12]Kong L, Cambron S E, Ohm H W. Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol Breed, 2008, 21: 183–194
[13]Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet, 2005, 111: 677–687
[14]Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805–818
[15]Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S . Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336
[16]Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics, 2005, 5: 80–96
[17]Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong L R. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet, 2010, 122: 263–270
[18]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res, 1984, 12: 4127– 4138
[19]Zhivotovsky L A, Rosenberg N A, Feldman M W. Features of evolution and expansion of modern humans, inferred from genome-wide microsatellite markers. Aln J Hum Genet, 2003, 72: 1171
[20]Balloux F, Brunner H, Lugon-Moulin N. Microsatellites can be misleading: an empirical and simulation study. Evolution, 2000, 54: 1414–1422
[21]Saveliev A, Everett C, Sharpe T. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature, 2003, 422: 909–913
[22]Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res, 1973, 22: 201–204
[23]Ellegren H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet, 2000, 16: 551–558
[24]Gao L Z, Zhang C H, Chang L P. Microsatellite diversity within Oryza sativa with emphasis on indica–japonoca divergence. Gnenet Res, 2005, 85: 1–14
[25]Dietrich W F. A comprehensive genetic map of the mouse genome. Nature, 1996, 380: 149–152
[26]Liu W H, Nie H, Wang S B. Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet, 2005, 111: 651–706
[27]Hao C-Y(郝晨阳), Wang L-F(王兰芬), Zhang X-Y(张学勇), You G-X(游光霞), Dong Y-C(董玉琛), Jia J-Z(贾继增), Liu X(刘旭), Shang X-W (尚勋武), Liu S-C(刘三才), Cao Y-S(曹永生). The variations of genetic diversity in Chinese wheat cultivars. Sci China Ser C (中国科学?C辑), 2005, 35(5): 408–415 (in Chinese)
[28]Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Ge H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). The construction and genetic diversity of Chinese common wheat core germplasm. Chin Sci Bull (科学通报), 2008, 53(8): 908–915 (in Chinese)
[29]Mestiri I, Chagué V, Tanguy A M, Huneau C, Huteau V, Harry B, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependant meiotic stability and aneuploidy but structural genomic additivity. New Phytol, 2010, 186: 86–101
[30]King D G. Evolutionary tuning knobs. Endeavor, 1997, 21: 36–40.
[31]Verstrepen K J. Intragenic tandem repeats generate functional variability. Nat Genet, 2005, 37: 986–990
[32]Vinces M D. Unstable tandem repeats in promoters confer transcriptional evolvability. Science, 2009, 324: 1213–1216
[33]Li Y C, Abraham B K, Tzion F, Eviatar N. SSR structure, function, and evolution within genes. Mol Biol Evol, 2004, 21: 991–1007
[34]Yechezkel K, David G K. Simple sequence repeats as advantageous mutators in evolution. Trends Genet, 2006, 22: 253–259
[35]Sung W, Abraham T, Bergeron R D, Michael L, Thomas W K. Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics, 2010, 11: 691
[36]Liu B, Vega J M, Segal G. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: I. Changes in low-copy non-coding DNA sequences. Genome, 1998, 41: 272–277
[37]Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: II. Changes in low-copy coding DNA sequences. Genome, 1998, 41: 535–542
[38]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160: 1651–1659
[39]Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13:1749–1759
[1] KOU Chun-Lan,ZHAO Lai-Bin,LIU Meng,HAO Ming,NING Shun-Zong,YUAN Zhong-Wei,LIU Deng-Cai,ZHANG Lian-Quan*. Detection of the Molecular Marker and Chromosomal Segment linked to Unreduced Gamete Gene in Common Wheat [J]. Acta Agron Sin, 2016, 42(07): 984-989.
[2] ZHANG Yan-Wei,ZHANG Li-Feng,LI Wei,WANG Cai-Jie,ZHANG Jun,XU Ran. Identification, Expression and Variation Analysis of Salt Tolerance Related GmNAC Genes in Soybean [J]. Acta Agron Sin, 2016, 42(07): 990-999.
[3] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,YANG Wu-Yun,WU Yuan-Qi,WU Chun,MA Xiao-Ling,LI Shizhao. Quality of Major WheatCultivars Grown in Sichuan Province in Recent Decade [J]. Acta Agron Sin, 2016, 42(06): 803-812.
[4] HE Liang-Qiong,XIONG Fa-Qian,TANG Xiu-Mei,JIANG Jing,HAN Zhu-Qiang,ZHONG Rui-Chun,GAO Zhong-Kui,Li Zhong,HE Xin-Hua,TANG Rong-Hua. Analysis of Gene Expression Variation by cDNA-SCoT Technique at the Early Period of Arachis Artificial Allopolypoidy Evolution [J]. Acta Agron Sin, 2014, 40(10): 1767-1775.
[5] QIN Hai-Feng,LONG Ning,WU Jian-Guo,SHI Chun-Hai. Construction of Microsatellite-Enriched Library and Isolation of Icrosatellite Markers in Stevia rebaudiana [J]. Acta Agron Sin, 2014, 40(03): 447-456.
[6] ZHAO Zhi-Gang,FU Gui,DENG Chang-Rong,DU De-Zhi. AFLP and MSAP Analysis on Genetic Variation in Early Generations of Artificially Synthesized Brassica napus [J]. Acta Agron Sin, 2013, 39(07): 1231-1239.
[7] ZHAO Liang,CAI Cai-Ping,MEI Hong-Xian,GUO Wang-Zhen. Screening of Microsatellite Loci for Identifying Genome Barcoding of Cotton Cultivars [J]. Acta Agron Sin, 2012, 38(10): 1810-1817.
[8] LI Suo-Ping,ZHANG Da-Le,WANG Xiu-E,QI Zeng-Jun,LIU Da-Jun. Genomic Variation in F1 Hybrid and Amphidiploid between Aegilops tauschii and Secale cereale [J]. Acta Agron Sin, 2012, 38(06): 996-1002.
[9] HAN Jian-Dong,LI Wei-Hua,CAO Yuan-Yin,GONG Zhi-Yuan,YAO Qiang. Microsatellite Markers Linked to Stem Rust Resistance Gene Sr33 in Wheat [J]. Acta Agron Sin, 2012, 38(06): 1003-1008.
[10] ZHANG Han, WANG Jian-Cheng, WANG Dong-Jian, TAO Feng-Xia, HU Jin-Fang, SONG Guo-An, GUAN Yan-An, LI Ru-Yu. Assessment of Genetic Diversity in Chinese Sorghum Landraces Using SSR Markers as Compared with Foreign Accessions [J]. Acta Agron Sin, 2011, 37(02): 224-234.
[11] REN Qiang,LIU Hui-Juan,CHEN Yang,XU Shi-Chang,HE Ming-Zhao,XIN Zhi-Yong,ZHANG Ze. Molecular Tagging of a Stripe Rust Resistance Gene in a Triticum durumAegilops squarrosa Synthetic Wheat CI191 [J]. Acta Agron Sin, 2010, 36(05): 721-727.
[12] ZHANG Pei-Pei,WANG Xia-Qing,YU Yang,YU Yu,LIN Zhong-Xu,ZHANG Xian-Long. Isolation,Characterization and Mapping of Genomic Microsatellite Markers for the First Time in Sea-Island Cotton(Gossypium barbadense) [J]. Acta Agron Sin, 2009, 35(6): 1013-1020.
[13] QI Dong-Ling,GUO Gui-Zhen,LEE Myung-Chul,YANG Chun-Gang,ZHANG Jun-Guo,CAO Gui-Lan,ZHANG San-Yuan,SUH Seok-Cheol,ZHOU Qing-Yang,HAN Long-Zhi. Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage under Alkaline Stress in Japonica Rice [J]. Acta Agron Sin, 2009, 35(2): 301-308.
[14] DENG Xin;CHEN Xin-Bo;LONG Song-Hua;WANG Xiao-Chun;GAO Yuan;HE Dong-Feng;WANG Jin;WANG Yu-Fu. Microsatellite Molecular Marker Enrichment by Magnetic Beads in Flax [J]. Acta Agron Sin, 2008, 34(12): 2099-2105.
[15] LIAO Xiang-Zheng;WANG Jin;ZHOU Rong-Hua;REN Zheng-Long;JIA Ji-Zeng. Mining Favorable Alleles of QTLs Conferring 1000-Grain Weight from Synthetic Wheat [J]. Acta Agron Sin, 2008, 34(11): 1877-1884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!