Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (03): 399-406.doi: 10.3724/SP.J.1006.2017.00399

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Biomass-Based Main Spike MorphologicalParameter Model for Winter Wheat

CHEN Yu-Li1,YANG Ping1,ZHANG Wen-Yu2,ZHANG Wei-Xin2,ZHUYe-Ping3,LI Shi-Juan3,GONG Fa-Jiang1,BI Hai-Bin1,YUE Ting1,CAO Hong-Xin2,*   

  1. 1Zibo Academy of Agricultural Sciences, Zibo 255033, China; 2 InformationEngineering Research Center for Digital Agriculture, Institute of Agricultural Economy, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-06-19 Revised:2016-11-02 Online:2017-03-12 Published:2016-11-18
  • Contact: 曹宏鑫, E-mail: caohongxin@hotmail.com E-mail:luckydogcyl@163.com
  • Supported by:

    This study was supported by the National High Technology Research and Development Program of China (2013AA102305-1)

Abstract:

Spike morphological structure modelis an important basis for the function and structure model in winterwheat. We carried out a field experimentin the 2013–2014 and 2014–2015 growing reasonsusing winter wheat varieties Jimai 22, Tainong 18, and Luyuan 502under different nitrogen application levels. The morphological-structure models of wheat spikewere built through dissecting the quantitativerelationship between spike morphological-structure parameters and organ biomass, as well as the internal connections of morphological-structure parameters. These models were then validated with anindependent dataset collected in the 2014–2015 growing season.Except forspike length,all the models of spike width, spike thickness, glume length, glume width, glume thickness, grain length, grain width, and grain thicknesshad higher accuracy. These models can be used to simulate spike structure in diverse varieties under different nitrogenapplication levels.

Key words: Winter wheat, Morphological structure, Biomass, Spike, Model

[1]曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优,陈煜利.作物模型发展探讨. 中国农业科学, 2011, 44: 3520–3528
Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yue Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. SciAgricSin, 2011,44:3520–3528(in Chinese with English abstract)
[2]Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Vakev A J. Lignum: a tree model based oil simple structural units. Ann Bot, 1996, 77: 87–98
[3]Perttunen J, Sievänen R, Nikinmaa E. Lignum: a model combining the structure and the functioning of trees. Ecol Model, 1998, 108: 189–198
[4]Perttunen J, Nikinmaa E, Martin J, Lechowicz, Sievänen R, Messier C. Application of the functional-structural tree model Lignum to sugarmaple saplings (Acer saccharum Marsh) vowing in forest gaps. Ann Bot, 2001, 88: 471–481
[5]Cieslak M, Seleznyova A N, Hanan J. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Ann Bot, 2010, 107: 747–764
[6]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Syst, 2003, 75: 47–77
[7]Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot, 2005, 95: 1131–1143
[8]Yan H P, Kang M Z, de Reffye P, Dingkuhn M. A dynamic architectural plant model simulating resource-dependent growth. Ann Bot, 2004, 93: 591–602
[9]Cao H X, Liu Y, Liu Y X, Hanan J. S., Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 1621–1632
[10]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093–4099
Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade basedon biomass. SciAgricSin, 2009,42:4093–4099(in Chinese with English abstract)
[11]Risto S. Looking back: ten years of FSPM, 2007. http://algorithmicbotany.org/FSPM07/proceedings.html
[12]张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. 应用生态学报, 2011, 22: 1765–1770
Zhang W Y, Tang L, Zhu X C, Yang Y, Cao W X, Zhu Y. Dynamic simulation of wheat stem-sheath angle based on process.Chin JApplEcol, 2011, 22: 1765–1770(in Chinesewith English abstract)
[13]陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫. 越冬前冬小麦主茎叶片几何参数模型研究. 麦类作物学报, 2015, 35: 1719–1726
Chen Y L, Yang P, Zhang W Y, Zhang W X, Zhu Y P, Li S J, Gong F J, Bi H B, Yue T, Cao H X. Study on main geometrical parameter models of leaf blade at pre-overwintering of winter wheat. J Triticeae Crops, 2015, 35: 1719–1726 (in Chinese with English abstract)
[14]张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 基于生物量的油菜越冬前植株叶片空间形态结构模型. 作物学报, 2015, 41: 318–328
Zhang W X, Cao H X, Zhu Y, Liu Y, Zhang W Y, Chen Y L, Fu K Y. Morphological structure model of leaf space based on biomass at pre-overwintering stage in rapeseed (Brassica napus L.) plant. ActaAgron Sin, 2015, 41: 318–328(in Chinese with English abstract)
[15]陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25(1): 71–74
Chen G Q, Zhu Y, Cao W X. Modeling leaf sheath and internode growth dynamics in wheat. J Triticeae Crops, 2005, 25(1): 71–74 (in Chinese with English abstract)
[16]谭子辉, 朱艳, 姚霞, 田永超, 刘小军, 曹卫星. 冬小麦麦穗生长过程的模拟研究. 麦类作物学报, 2006, 26(4): 93–97
Tan Z H, Zhu Y, Yao X, Tian Y C, Liu X J, Cao W X. Modeling spike growth dynamics in winter wheat. J Triticeae Crops,2006, 26(4): 93–97(in Chinese with English abstract)
[17]聂志刚, 李广. 基于APSIM模型的可视化小麦生长系统分析. 草业科学, 2013, 30: 795–598
Nie Z G, Li G. Analysis of APSIM-based visual growth system in wheat. PratacultSci, 2013, 30: 795–598(in Chinese with English abstract)
[18]伍燕莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. 农业工程学报, 2009, 25(1): 121–126
Wu Y L, Cao W X, Tang L, Zhu Y, Liu H. OpenGL-based visual technology for wheat morphology. TransCSAE,2009, 25(1): 121–126 (in Chinese with English abstract)
[19]雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011, 27(3): 179–184
Lei X J, Tang L, Zhang Y H, Jiang H Y, Cao W X, Zhu Y. Geometric model and visualization of wheat spike.TransCSAE,2011, 27(3): 179–184 (in Chinese with English abstract)
[20]孟军, 郭新宇, 赵春江. 小麦地上部器官几何造型与可视化研究. 麦类作物学报, 2009, 29: 106–109
Meng J, Guo X Y, Zhao C J. Geometry modeling and visualization of above-ground organs of wheat. J Triticeae Crops,2009, 29: 106–109 (in Chinese with English abstract)
[21]陈国庆, 朱艳, 刘慧, 曹卫星. 基于形态模型的小麦器官和单株虚拟生长系统研究. 农业工程学报, 2007, 23(3): 126–130
Chen G Q, Zhu Y, Liu H, Cao W X. Morphogenesis model-based virtual growth system for organs and plant of wheat. TransCSAE, 2007, 23(3): 126–130 (in Chinese with English abstract)
[22]MabilleF, Abecassis J. Parametric modeling of wheat grain morphology: a new perspective. J Cereal Sci, 2003, 37, 43–53
[23]刘铁梅, 曹卫星, 罗卫红, 王绍华, 郭文善, 邹薇, 周琴. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, (1): 25–31
Liu T M, Cao W X, Luo W H, Wang S H, Guo W S, Zou W, Zhou Q. Quantitative simulation on dry matter partitioning dynamic in wheat organs.J Triticeae Crops,2001, (1): 25–31 (in Chinese with English abstract)
[24]Asseng S, Bar-Tal A, Bowden J W, Keating B A, Van Hewraarden A, Palat J A, Hhut NI, ProbertME. Simulation of grain protein content with APSIM-N wheat. Eur J Agron, 2002, 16: 25–42
[25]田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. 应用生态学报, 2010, 21: 41–47
TianMY, Li DD, Dai TB, Jiang D, Jing Q, Cao W X. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Chin J Appl Ecol, 2010, 21: 41–47(in Chinese with English abstract)
[26]李存东, 曹卫星, 戴廷波, 严美春. 小麦不同品种和播期对发育阶段的效应. 应用生态学报, 2001, 12: 218–222
Li CD, Cao WX, Dai TB, Yan M C. Effects of different varieties and sowingdates on development stages of wheat.Chin J Appl Ecol, 2001, 12: 218–222(in Chinese with English abstract)
[27]张定一, 张永清, 闫翠萍, 裴雪霞. 基因型、播期和密度对不同成穗型小麦籽粒产量和灌浆特性的影响. 应用与环境生物学报, 2009, 15(1): 28–34
Zhang D Y, Zhang Y Q, Yan C P, Pei X X. Effects of genotype, sowing date and planting density on grain filling and yield of wheat varieties with different ears forming characteristics.Chin J Appl Environ Biol, 2009, 15(1): 28–34 (in Chinese with English abstract)
[28]李宁, 段留生, 李建民, 翟志席, 李召虎. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响. 麦类作物学报, 2010,30:296–302
Li N, Duan L S, Li J M, Zhai Z X, Li Z H. Effect of sowing date and planting density on flag leaf photosynthesis, storage capacity after anthesis and yield in different spike type cultivars, J Triticeae Crops, 2010, 30: 296–302 (in Chinese with English abstract)
[29]河南省小麦高稳优低研究推广协作组. 小麦生态与生产技术. 郑州: 河南科技出版社, 1986. pp 150–164
The Collaboration Groupfor High-Yield, Stable-Yield, High-Quality and High-Efficient Wheat Production. Wheat Ecology and Production Technologies. Zhengzhou: Henan Scientific and Technical Publishers, 1986. pp 150–164(in Chinese)
[30]马溶慧, 朱云集, 郭天财, 闫耀礼, 刘万代. 国麦1号播期播量对群体发育及产量的影响. 山东农业科学, 2004, (4): 12–15
Ma R H, Zhu Y J, Guo T C, Yan Y L, Liu W D. Effects of planting date and seed rate in group development and yield of Guomai 1. Shandong AgricSci,2004, (4): 12–15 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[3] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[4] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[5] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[8] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[9] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[10] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[11] ZHANG Zhi-Xing, CHEN Hua, MIN Xiu-Mei, XU Hai-Long, SONG Guo, LIN Wen-Xiong. Preliminary study of the peptide aptamer R18 promotes grain filling of rice inferior spikelets [J]. Acta Agronomica Sinica, 2021, 47(7): 1332-1341.
[12] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[13] YAO Jia-Yu, YU Ji-Xiang, WANG Zhi-Qin, LIU Li-Jun, ZHOU Juan, ZHANG Wei-Yang, YANG Jian-Chang. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 894-903.
[14] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[15] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!