Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 657-671.doi: 10.3724/SP.J.1006.2018.00657

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang

Da-Wei JIAN1,2, Yang ZHOU2, Hong-Wei LIU2, Li YANG2, Chun-Yan MAI3, Li-Qiang YU4, Xin-Nian HAN5, Hong-Jun ZHANG2,*(), Hong-Jie LI2,*()   

  1. 1Institute of Agricultural Science, the Fourth Division of Xinjiang Production and Construction Corps, Yining 835000, Xinjiang, China
    2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Xinxiang Innovation Center for Breeding Technology of Dwarf-male-sterile Wheat, Xinxiang 453731, Henan, China
    4 Zhaoxian Experiment Station, Shijiazhuang Academy of Agriculture and Forestry Sciences, Zhaoxian 515300, Hebei, China
    5 Key Laboratory of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang, China
  • Received:2017-08-03 Accepted:2018-01-08 Online:2018-05-20 Published:2018-01-26
  • Contact: Hong-Jun ZHANG,Hong-Jie LI E-mail:zhanghongjun01@caas.cn;lihongjie@caas.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31771881, 31401468) and the National Key Research and Development Program of China (2017YFD0101000, 2016YFD0101600, 2016YFD0101004, 2016YFD0100102).

Abstract:

Illuminating genetic variations in the improved cultivars and landraces of wheat from Xinjiang is important for further improvement of wheat in this region. In this study, 52 functional markers were used to examine 136 Xinjiang wheat accessions. Compared with the improved cultivars, the semi-dwarfing alleles Rht-B1b and Rht-D1b, facultative allele Vrn-D1b, T1BL·1RS translocation, TaLox-B1a allele for high lipoxynase activity, Ppo-D1a allele for lower polyphenol oxidase activity, Psy-A1b allele for low yellow pigment content and Hap-H (TaSus-2B) allele for high kernel weight were absent in the landraces. Furthermore, the frequencies of photoperiod insensitivity allele Ppd-D1a (77.6%), strong gluten subunits Dx5+Dy10 (35.4%), Pin-D1ballele (25.0%) for hard grain texture, and TaCwi-A1a (63.3%), Hap-4A-T (Tacwi-4A) (33.8%), Hap-5D-C (TaCWI-5D) (93.7%), Hap-2 (TaGS1a) (77.9%), TaGS-D1a (78.5%), TaGS5-A1b (50.0%), and TaTGW6-A1a (92.1%) alleles associated with high kernel weight were higher in the improved cultivars than in the landraces. The frequencies of most favorable alleles displayed a discontinuously increasing trend over breeding periods. As for the favorable alleles associated with adaptation and quality, the spring cultivars had higher frequencies than the winter cultivars. Analysis of the functional markers showed that the improved cultivars had higher genetic diversity than the landraces. Based on the principle component analysis, the wheat accessions were clustered into two groups: improved cultivars and landraces, and the improved cultivars were further divided into two groups of winter and spring cultivars. There were significant genetic differences between the improved cultivars and the landraces. The favorable alleles and allele combinations identified in this study provide important information for further improvement of wheat cultivars in Xinjiang.

Key words: Triticum aestivum, Xinjiang Uygur Autonomous Region, functional marker, agronomic traits, genetic variation

Supplementary table 1

General information on 79 wheat improved cultivars from Xinjiang"

编号
Code
名称
Name
系谱
Pedigree
冬/春性
Winter/
spring
来源
Origin
审定或
育成年份
Released/
bred year
1 新冬2号 热依木夏/亥恩·亥德 新疆农业科学院粮食作物研究所 1966
2 新冬5号 巴克甫克/北京7号 新疆农业科学院粮食作物研究所 1969
3 新冬7号 新冬2号/敖萨德3号 新疆农业科学院粮食作物研究所 1969
4 新冬14 热衣木夏/乌克兰83 新疆农垦科学院作物研究所 1984
5 新冬15 新冬2号/中引5号 新疆农业科学院粮食作物研究所 1989
6 新冬16 (巴克甫克/亥恩·亥德)/70-4 新疆生产建设兵团农七师农业科学研究所 1988
7 新冬17 新冬14/安选5号 新疆农垦科学院作物研究所 1994
8 新冬18 N.S11-33/新冬3号 新疆农业科学院粮食作物研究所 1994
9 新冬19 (170/阿夫乐尔)/H-矮82-6 F0种子辐照 新疆农业科学院核技术生物技术研究所 1995
10 新冬20 冀875018 新疆农业科学院粮食作物研究所 1995
11 新冬21 318/88122 新疆农业科学院核技术生物技术研究所 1997
12 新冬22 (诺斯塔/花春84-1)/(76-4/洛夫林13) 新疆生产建设兵团农七师农业科学研究所 1996
13 新冬23 美国引进F1分离群体/花培品系88-136 新疆农业科学院核技术生物技术研究所 2000
14 新冬24 9245/冀6159 新疆农业科学院粮食作物研究所 2003
15 新冬27 从中国农业大学引进高代品系系谱选择 新疆农垦科学院作物研究所 2005
16 新冬28 92-45/新冬20 新疆农业科学院粮食作物研究所 2005
17 新冬29 PH82-2-2/鲁植79-1 新疆生产建设兵团农四师农业科学研究所 2005
18 新冬30 不详 新疆农垦科学院作物研究所 2007
19 新冬31 (4114/新冬14/丰收)/(新冬18/中引85) 新疆农业科学院粮食作物研究所 2007
20 新冬33 73-13-36/82-4009 石河子农业科技开发研究中心粮食油料作物研究所 2009
21 新冬36 (89(813)/新冬18)/晋农207 新疆农垦科学院作物研究所 2011
22 新冬37 京411/贵农15 中国农业科学院作物科学研究所 2012
23 新冬38 (矮秆916/9133)/伊农16 新疆生产建设兵团农四师农业科学研究所 2011
24 新冬41 石冬8号/新冬22 石河子农业科学研究院 2013
25 新冬48 (新冬22/M844)/石冬8号 石河子农业科学研究院 2015
26 新冬51 (藁城8901优/新冬18)/冀5473 新疆农垦科学院作物研究所 2015
27 新冬52 新冬17/95-7-13-2 石河子农业科学研究院粮油作物研究所 2015
28 伊农16 (白壳欧柔/72-829/K2-13)/ (72-629-7141-64/K2-13) 新疆生产建设兵团农四师农业科学研究所 1994
29 伊农18 [(77224/R2-13)/(7113-9/76-629)]/[(运动1号/00089)/(工农10-3/72-原78)] 新疆生产建设兵团农四师农业科学研究所 1999
30 奎花1号 京花1号/奎冬3号 新疆生产建设兵团农七师农业科学研究所 1991
31 石冬7号 87-5048/昌冬5号(76-165) 石河子农业科技开发研究中心 1999
32 石冬8号 昌冬5号(76-165)/82-4009 石河子农业科技开发研究中心 2003
33 石冬9号 轮回选择 新疆农垦科学院作物研究所 2003
34 喀冬1号 巴克甫克/亥恩·亥德 喀什地区农业科学研究所 1972
35 喀冬4号 华北187系选 喀什农业学校 1973
36 新春3号 西特·赛洛斯/奇春4号 F0种子辐照 新疆农业科学院核技术生物技术研究所 1985
37 新春4号 151/74-6//74-16/沃尔森 新疆农业科学院粮食作物研究所/昌吉农业科学研究所 1990
38 新春5号 繁6/6038 新疆农垦科学院作物研究所 1990
39 新春6号 中7906/新春2号 新疆农业科学院核技术生物技术研究所 1993
编号
Code
名称
Name
系谱
Pedigree
冬/春性
Winter/
spring
来源
Origin
审定或
育成年份
Released/
bred year
40 新春7号 中7906/新春2号 新疆农业科学院核技术生物技术研究所 1995
41 新春8号 CO7/21-23 石河子大学农学院 1997
42 新春9号 引进春麦品系NS-65 新疆农业科学院核技术生物技术研究所 1999
43 新春10号 9-3-3/新春4号 新疆农业科学院粮食作物研究所 2002
44 新春11 新春2号/86-7 石河子大学农学院 2002
45 新春12 8021/77-13 新疆农业科学院粮食作物研究所 2003
46 新春13 不详 不详 2003
47 新春14 不详 新疆农业科学院核技术生物技术研究所 2004
48 新春15 F5繁24/85307 新疆农业科学院粮食作物研究所 2004
49 新春16 86-6B/93鉴9 新疆农垦科学院作物研究所 2004
50 新春17 新春6号/NS64 新疆农业科学院核技术生物技术研究所 2005
51 新春18 不详 不详 2005
52 新春19 不详 石河子大学农学院 2005
53 新春20 昌春6号/墨西哥M85-30 新疆农业科学院粮食作物研究所 2006
54 新春21 NS-23-3/青海946 新疆生产建设兵团农五师农业科学研究所 2006
55 新春22 Tal/永1265 新疆农垦科学院作物研究所; 宁夏永宁县小麦育繁所 2006
56 新春23 CIMMYT引进F2/88-136 新疆农业科学院核技术生物技术研究所 2006
57 新春24 不详 不详 2006
58 新春25 不详 新疆农业科学院奇台春小麦试验场 2006
59 新春26 新春9号/新春6号 新疆农业科学院核技术生物技术研究所 2007
60 新春27 91I82299/21-4 新疆农业科学院粮食作物研究所 2007
61 新春28 CIMMYT引进, 原代号为01-25 新疆农垦科学院作物研究所 2007
62 新春29 85-56/25-3 新疆农业科学院粮食作物研究所 2008
63 新春30 新春9号/新春6号 新疆农业科学院核技术生物技术研究所 2009
64 新春31 12-25/96-5 石河子大学农学院 2009
65 新春32 97-18/永良11 新疆生产建设兵团农五师农业科学研究所 2009
66 新春33 新春9号/新春6号 新疆农业科学院核技术生物技术研究所 2010
67 新春34 88(13)/5×44 新疆农业科学院粮食作物研究所 2011
68 新春35 巴96-4870/93鉴29 新疆农垦科学院作物研究所 2011
69 新春36 21-6/黑小麦 新疆生产建设兵团农十三师农业科学研究所 2011
70 新春38 原212/97-46-3 新疆农垦科学院作物研究所与新疆九禾种业有限责任公司 2012
71 宁春23 (宁春4号/中7906)/陕农7855 宁夏农林科学院作物科学研究所 1995
72 宁春32 建三江- 6918/高代品系1658 宁夏农林科学院作物科学研究所 2002
73 宁春35 宁春16/永A71 宁夏农林科学院作物科学研究所 2003
74 宁春37 从南非引进 宁夏农林科学院作物科学研究所 2005
75 昌春6号 (82A3/021)/(78A131/03312) 新疆农业科学院奇台春小麦试验场 1994
76 抗旱1号 H101/C8501 新疆生产建设兵团农四师农业科学研究所 2013
77 青春5号 阿勃/欧柔 青海省农业科学研究院 1969
78 新曙光1号 阿勃/欧柔 黑龙江省农业科学研究院 1971
79 吐春9号 (80B63/02126)/(77A7/834) 新疆农业科学院奇台春小麦试验场 1998

Supplementary table 2

General information on 57 wheat landraces from Xinjiang"

编号
Code
名称
Name
冬/春性
Winter/spring
来源
Origin
编号
Code
名称
Name
冬/春性
Winter/spring
来源
Origin
80 库车白冬麦 新疆库车 109 直芒 新疆焉耆
81 白冬麦 新疆呼图壁 110 佛手麦 新疆库车
82 小白冬麦 新疆呼图壁 111 稻麦子 新疆乌什
83 阿克库孜盖 新疆库尔勒 112 高拉山春麦 新疆疏附
84 热衣木夏 新疆新和 113 白芒红麦 新疆叶城
85 长巴什曼 新疆叶城 114 古玛尔汗 新疆墨玉
86 纳瓦提然 新疆新和 115 克拉黑麦 新疆墨玉
87 阿克脱哈尔 新疆哈巴河 116 阿及麦 新疆墨玉
88 其力克 新疆洛浦 117 白吐里克 新疆墨玉
89 黑芒 新疆米泉 118 西藏稻麦子 新疆洛浦
90 白光头 新疆昌吉 119 其力克 新疆洛浦
91 红春麦 新疆昌吉 120 买甚春麦 新疆于田
92 木锨棒 新疆昌吉 121 古尔汗满 新疆于田
93 疙瘩头 新疆昌吉 122 阿克禾孜干 新疆于田
94 金包银 新疆昌吉 123 吐里克 新疆和田
95 兰麦 新疆昌吉 124 克兹买克 新疆和田
96 黑芒春 新疆米泉 125 米麦米尔 新疆和田
97 白春麦 新疆玛纳斯 126 大头郞 新疆哈密
98 无芒麦 新疆鄯善 127 小白芒(白) 新疆青河
99 分枝麦 新疆哈密 128 小白芒(红) 新疆青河
100 大白麦 新疆哈密 129 小红芒1 新疆青河
101 黄库班克 新疆伊宁 130 小红芒2 新疆青河
102 比热巴沙尔 新疆霍城 131 小红麦 新疆巴里坤
103 波兰麦 新疆吐鲁番 132 托力克 新疆和田
104 黑头麦 新疆塔城 133 金包银(红) 新疆伊吾
105 分枝黑芒 新疆塔城 134 金包银(白) 新疆伊吾
106 良山麦子 新疆阿勒泰 135 红穗无芒 新疆阿勒泰
107 黑库班克 新疆阿勒泰 136 阿克贾克 新疆和田
108 兰壳兰芒 新疆阿勒泰

Fig. 1

PCR products of partial genes associated with adaptation (A), quality (B), and kernel weight (C) in 12 Xinjiang wheat cultivars1: Xinchun 3; 2: Xinchun 4; 3: Xinchun 5; 4: Xinchun 6; 5: Xinchun 7; 6: Xinchun 8; 7: Xinchun 9; 8: Xinchun 10; 9: Xinchun 11; 10: Xinchun 12; 11: Xinchun 13; 12: Xinchun 14."

Table 1

Comparison of allele frequencies at the loci associated with adaptation, quality and kernel weight in the wheat cultivars and the landraces from Xinjiang"

基因
Gene
基因座
Locus
等位基因
Allele
全部All 冬性Winter 春性Spring
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
适应性 Adaptation
Rht Rht-B1 Rht-B1a 20.3 100.0 16.1 100.0 23.3 100.0
Rht-B1b 79.7 0 83.9 0 76.7 0
Rht-D1 Rht-D1a 84.8 100.0 91.4 100.0 79.5 100.0
Rht-D1b 15.2 0 8.6 0 20.5 0
VRN Vrn-A1 Vrn-A1 39.2 5.8 0 0 70.5 93.3
vrn-A1 60.8 94.2 100.0 100.0 29.5 6.7
Vrn-B1 Vrn-B1 39.2 44.0 0 0 70.5 47.8
vrn-B1 60.8 56.0 100.0 100.0 29.5 52.2
Vrn-D1 Vrn-D1a 20.5 80.0 0.0 0.0 37.2 93.0
Vrn-D1b 1.7 0 2.9 0 0 0
vrn-D1 78.2 20.0 97.1 100.0 62.8 7.0
Vrn-B3 Vrn-B3 0 0 0 0 0 0
vrn-B3 100.0 100.0 100.0 100.0 100.0 100.0
Ppd Ppd-A1 Ppd-A1a 100.0 100.0 100.0 100.0 100.0 100.0
Ppd-A1b 0 0 0 0 0 0
Ppd-B1 Ppd-B1a 0 0 0 0 0 0
基因
Gene
基因座
Locus
等位基因
Allele
全部All 冬性Winter 春性Spring
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
Ppd-B1b 100.0 100.0 100.0 100.0 100.0 100.0
Ppd-D1 Ppd-D1a 77.6 4.1 55.9 0 95.1 4.8
Ppd-D1b 22.4 95.9 44.1 100.0 4.9 95.2
T1BL·1RS Sec-1 T1BL·1RS 16.5 0 11.4 0 20.5 0
Non T1BL·1RS 83.5 100.0 88.6 100.0 79.5 100.0
品质 Quality
Glu-1 Glu-D1 Dx5+Dy10 35.4 1.8 22.9 16.7 45.5 0
Dx2+Dy12 64.6 98.2 77.1 83.3 54.5 100.0
Lox TaLox-B1 TaLox-B1a 20.0 0 37.1 0 5.0 0
TaLox-B1b 80.0 100.0 62.9 100.0 95.0 100.0
Pin Pinb-D1 Pinb-D1a 75.0 91.7 56.3 50.0 91.7 97.6
Pinb-D1b 25.0 8.3 43.8 50.0 8.3 2.4
Ppo Ppo-A1 Ppo-A1a 78.1 48.6 60.9 50.0 88.1 48.5
Ppo-A1b 21.9 51.4 39.1 50.0 11.9 51.5
Ppo-D1 Ppo-D1a 3.7 0 0 0 6.7 0
Ppo-D1b 96.3 100.0 100.0 100.0 93.3 100.0
Psy Psy-A1 Psy-A1a 89.6 100.0 100.0 100.0 82.6 100.0
Psy-A1b 10.4 0 0 0 17.4 0
Psy-B1 Psy-B1c 58.8 55.0 100.0 100.0 30.0 52.6
Psy-B1d 41.2 45.0 0 0 70.0 47.4
Psy1-D1 Psy1-D1a 84.4 55.6 80.0 100.0 88.1 48.9
Psy1-D1g 15.6 44.4 20.0 0 11.9 51.1
粒重 Kernel weight
CWI TaCwi-A1 TaCwi-A1a 63.3 22.8 40.0 14.3 81.8 24.0
TaCwi-A1b 36.7 77.2 60.0 85.7 18.2 76.0
TaCWI-4A Hap-4A-C 66.2 83.7 54.5 66.7 77.1 86.0
Hap-4A-T 33.8 16.3 45.5 33.3 22.9 14.0
TaCWI-5D Hap-5D-C 93.7 85.5 88.6 71.4 97.7 87.5
Hap-5D-G 6.3 14.5 11.4 28.6 2.3 12.5
GS1 TaGS1a Hap-1 22.1 39.0 40.7 0.0 9.8 42.1
Hap-2 77.9 61.0 59.3 100.0 90.2 57.9
GS3 TaGS-D1 TaGS-D1a 78.5 64.0 80.0 57.1 77.3 65.1
TaGS-D1b 21.5 36.0 20.0 42.9 22.7 34.9
GS5 TaGS5-A1 TaGS5-A1a 50.0 88.7 39.3 83.3 58.3 89.4
TaGS5-A1b 50.0 11.3 60.7 16.7 41.7 10.6
Sus-2 TaSus2-2B Hap-L 86.8 100.0 66.7 100.0 100.0 100.0
Hap-H 13.2 0 33.3 0 0 0
TGW6 TaTGW6-A1 TaTGW6-A1a 92.1 55.1 87.9 20.0 95.3 59.1
TaTGW6-A1b 7.9 44.9 12.1 80.0 4.7 40.9

Fig. 2

Frequencies of favorable allele combinations at the loci associated with plant height (A), quality (B), and kernel weight (C) in the improved cultivars and the landraces from Xinjiang"

Fig. 3

Variation in the frequency of favorable alleles associated with adaptation, quality, and kernel weight in different breeding periods A: Rht-B1b allele; B: Rht-D1b allele; C: TlBL·1RS translocation line; D: TaLox-B1a allele; E: Dx5+Dy10 subunits; F: TaGS-D1a allele; G: TaSus2-2B (hap-h allele); H: TaCwi-A1a allele; I: TaCWI-4A allele; J: TaCWI-5D allele; K: TaTGW6-A1a allele. * and ** indicate significance of R2 at the 0.05 and 0.01 probability levels, respectively."

Table 2

Comparison of number of alleles and polymorphic information content (PIC) at the loci associated with adaptation, quality and kernel weight in wheat cultivars and landraces from Xinjiang"

基因座
Locus
等位基因数 No. of alleles 多态性信息量 PIC
改良品种 Improved cultivar 地方品种 Landrace 改良品种 Improved cultivar 地方品种 Landrace
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
适应性 Adaptation
Rht-B1 2 2 2 1 1 1 0.27 0.23 0.29 0 0 0
Rht-D1 2 2 2 1 1 1 0.22 0.14 0.27 0 0 0
Vrn-A1 2 1 2 2 1 2 0.36 0 0.33 0.10 0 0.11
Vrn-B1 2 1 2 2 1 2 0.36 0 0.33 0.37 0 0.37
Vrn-D1 3 2 2 2 1 2 0.29 0.05 0.36 0.27 0 0.12
Vrn-B3 1 1 1 1 1 1 0 0 0 0 0 0
Ppd-A1 1 1 1 1 1 1 0 0 0 0 0 0
Ppd-B1 1 1 1 1 1 1 0 0 0 0 0 0
Ppd-D1 2 2 2 2 1 2 0.29 0.37 0.11 0.09 0 0.10
T1BL·1RS 2 2 2 1 1 1 0.24 0.18 0.27 0 0 0
平均Mean 1.80 1.50 1.70 1.40 1.00 1.40 0.20 0.10 0.20 0.08 0 0.07
品质 Quality
Dx5+Dy10 2 2 2 2 2 1 0.35 0.30 0.37 0.05 0.28 0
TaLox-B1 2 2 2 2 2 2 0.28 0.35 0.15 0.07 0.24 0.04
Pinb-D1 2 2 2 2 2 2 0.32 0.37 0.23 0.15 0.38 0.07
Ppo-A1 2 2 2 2 2 2 0.29 0.36 0.21 0.37 0.38 0.37
Ppo-D1 2 1 2 1 1 1 0.07 0 0.12 0 0 0
Psy-A1 2 1 2 1 1 1 0.17 0 0.25 0 0 0
Psy-B1 2 1 2 2 1 2 0.37 0 0.33 0.37 0 0.37
Psy1-D1 2 2 2 2 1 2 0.23 0.27 0.19 0.37 0 0.37
平均Mean 2.00 1.63 2.00 1.75 1.50 1.63 0.26 0.21 0.23 0.17 0.16 0.15
粒重 Kernel weight
TaCwi-A1 2 2 2 2 2 2 0.36 0.36 0.25 0.29 0.21 0.30
TaCWI-4A 2 2 2 2 2 2 0.35 0.37 0.32 0.28 0.35 0.26
TaCWI-5D 2 2 2 2 2 2 0.11 0.18 0.04 0.23 0.32 0.21
TaGS1a 2 2 2 2 2 2 0.29 0.37 0.17 0.36 0.19 0.37
TaGS-D1 2 2 2 2 2 2 0.28 0.36 0.37 0.35 0.24 0.19
TaGS5-A1 2 2 2 2 2 2 0.38 0.27 0.29 0.20 0.37 0.35
TaSus2-2B 2 2 1 1 1 1 0.21 0.35 0 0 0 0
TaTGW6-A1 2 1 2 2 2 2 0.14 0.19 0.10 0.37 0.27 0.37
平均Mean 2.00 1.88 1.88 1.85 1.88 1.88 0.27 0.31 0.19 0.26 0.24 0.26
总平均
Total mean
1.92 1.67 1.86 1.65 1.46 1.63 0.24 0.20 0.21 0.17 0.13 0.16

Table 3

Analysis of molecular variance (AMOVA) based on genetic diversity"

变异来源
Source of variance
自由度
df
平方和
Sum of square
方差分量
Variance component
变异百分比
Percentage of variation (%)
群体间Among populations 1 96.7 0.70** 23.9
群体内个体间Among individuals within populations 134 578.4 2.09** 71.5
个体间Within individuals 136 18.5 0.14** 4.7
总计Total 271 693.6 2.92

Fig. 4

Principal component (PC) analysis of 136 Xinjiang wheat accessions1-79: improved cultivars, including winter (1-35) and spring (36-79) accesions; 80-136: landraces, including winter (80-86) and spring (87-136) accesions. Numbers represent germplasm names given in Supplementary Tables 1 and S2."

[1] 吴新元. 新疆优质小麦产业化进展. 新疆农业科学, 2010, 47(增刊2): 1-2
Wu X Y.The industrializing progress of high-quality wheat in Xinjiang.Xinjiang Agric Sci, 2010, 47(suppl-2): 1-2 (in Chinese)
[2] 曹连莆, 艾尼瓦尔. 新疆小麦高产优质育种的进展与策略. 石河子大学学报(自然科学版), 1998, 2(增刊): 1-7
Cao L P, Ainiwaer. The progress and strategy on high yield and superior quality about wheat breeding in Xinjiang.J Shihezi Univ(Nat Sci Edn), 1998, 2(suppl): 1-7 (in Chinese with English abstract)
[3] 马宏. 新疆小麦品质状况浅谈. 粮食加工, 2009, 34(5): 87-88
doi: 10.3969/j.issn.1007-6395.2009.05.029
Ma H.Preliminary study on quality in Xjnjiang wheat.Grain Proc, 2009, 34(5): 87-88 (in Chinese)
doi: 10.3969/j.issn.1007-6395.2009.05.029
[4] Meng L, Xiang C, Liu H, Yang L, Mai C, Yu L, Wei Y, Li H, Zhang H, Zhou Y.The impact of modern plant breeding on dominant Chinese wheat cultivars (Triticum aestivum L.) revealed by SSR and functional markers. Genet Resour Crop Evol, 2018, 65: 55-65
doi: 10.1007/s10722-017-0508-2
[5] Andersen J R, Lübberstedt T.Functional markers in plants.Trends Plant Sci, 2003, 8: 554-560
doi: 10.1016/j.tplants.2003.09.010
[6] Liu Y, He Z, Appels R, Xia X.Functional markers in wheat: current status and future prospects.Theor Appl Genet, 2012, 125: 1-10
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[7] Worland A J, Börner A, Korzun V, Li W M, Petrovíc S, Sayers E J.The influence of photoperiod genes on the adaptability of European winter wheats.Euphytica, 1998, 100: 385-394
doi: 10.1023/A:1018327700985
[8] Fu D, Szűcs P, Yan L, Helguera M, Skinner J S, Zitzewitz J V, Hayes P M, Dubcovsky J.Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54-65
doi: 10.1007/s00438-004-1095-4 pmid: 15690172
[9] Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J.The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586
doi: 10.1073/pnas.0607142103 pmid: 17158798
[10] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A.A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733
[11] Seki M, Chono M, Nishimura T, Sato M, Yoshimura Y, Matsunaka H, Fujita M, Oda S, Kubo K, Kiribuchi-Otobe C, Kojima H, Nishida H, Kato K.Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars. Breed Sci, 2013, 63: 309-316
doi: 10.1270/jsbbs.63.309 pmid: 3770558
[12] Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R.“Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042
[13] Ishikawa G, Nakamura T.A new co-dominant PCR-based marker to identify the high-molecular-weight glutenin subunit combination ‘‘5+10’’ of common wheat.Wheat Inf Serv, 2007, 103: 1-4
[14] Geng H W, He Z H, Zhang L P, Qu Y Y, Xia X C.Cloning the lipoxygenase gene on chromosome 4BS and development of functional markers in common wheat.Crop Sci, 2012, 52: 568-576
[15] Giroux M J, Morris C F.A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin.Theor Appl Genet, 1997, 95: 857-864
doi: 10.1007/s001220050636
[16] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels, R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat.Mol Breed, 2005, 16: 209-218
doi: 10.1007/s11032-005-6618-0
[17] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C.Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development offunctional markers for the PPO genes in common wheat.Theor Appl Genet, 2007, 115: 47-58
doi: 10.1007/s00122-007-0539-8 pmid: 17426955
[18] He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C.Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221
[19] He X Y, He Z H, Ma W, Appels R, Xia X C.Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed, 2009, 23: 553-563
[20] Ma D, Yan J, He Z, Wu L, Xia X.Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2012, 29: 43-52
doi: 10.1007/s11032-010-9524-z
[21] Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X.A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet, 2015, 128: 131-143
doi: 10.1007/s00122-014-2417-5
[22] Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S.Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size ofTaGS1a in wheat. Field Crops Res, 2013, 154: 119-125
doi: 10.1016/j.fcr.2013.07.012
[23] Zhang Y, Liu J, Xia X, He Z.TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097-1107
doi: 10.1007/s11032-014-0102-7
[24] Wang S, Zhang X, Cheng F, Cui D.A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166
doi: 10.3389/fpls.2015.01166 pmid: 4688388
[25] Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X.The wheat (T. aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated withyield traits. Funct Integr Genomic, 2011, 11: 49-61
[26] Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2016, 36: 1.
[27] Guo X, Wang Y, Meng L, Liu H, Yang L, Zhou Y, Zhang H.Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions. Euphytica, 2015, 206: 1-10
doi: 10.1007/s10681-015-1440-1
[28] Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y.A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet, 2012, 125: 1697-1704
[29] Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L.Isolation of a new repetitive DNA sequence from Secalea fricanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159: 249-258
doi: 10.1007/s10681-007-9484-5
[30] Liu K, Muse S V.PowerMarker: An integrated analysis environment for genetic marker analysis.Bioinformatics, 2005, 21: 2128-2129
doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[31] Excoffier L, Lischer H E L. Arlequin suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Mol Ecol Resour, 2010, 10: 564-567
doi: 10.1111/men.2010.10.issue-3
[32] Rohlf F J.NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software. Setauket, New York, 2000
[33] 杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680-1688
Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y.Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680-1688 (in Chinese with English abstract)
[34] Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A.Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat(Triticum aestivum). PLoS One, 2012, 7: e33234
[35] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531-535
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J.Utilization of 1BL/1RS translation in wheat breeding in China.Acta Agron Sin, 2004, 30: 531-535 (in Chinese with English abstract)
[36] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943-954
Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y.Response to powdery mildew and detection of resistance genes in wheat cultivars from China.Acta Agron Sin, 2011, 37: 943-954 (in Chinese with English abstract)
[37] 王亮, 穆培源, 徐红军, 刘丽, 何中虎, 夏先春, 庄丽, 桑伟, 韩新年, 聂迎彬. 新疆小麦品种高分子量麦谷蛋白亚基组成分析. 麦类作物学报, 2008, 28: 430-435
doi: 10.7606/j.issn.1009-1041.2008.03.100
Wang L, Mu P Y, Xu H J, Liu L, He Z H, Xia X C, Zhuang L, Sang W, Han X N, Nie Y B.Compositions of HMW-GS in wheat varieties and advanced lines from Xinjiang.J Triticeae Crops, 2008, 28: 430-435 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2008.03.100
[38] Yang F P, Wang L H, Wang J W, He X Y, Zhang X K, Shang X W, Yang W X, Xia X C, He Z H.Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE.Crop Pasture Sci, 2010, 61: 84-91
doi: 10.1071/CP09164
[39] 王亮, 穆培源, 徐红军, 庄丽, 桑伟, 韩新年, 聂迎彬, 夏先春, 何中虎. 新疆小麦品种中多酚氧化酶(PPO)活性基因等位变异的分布. 麦类作物学报, 2008, 28: 766-771
Wang L, Mu P Y, Xu H J, Zhuang L, Sang W, Han X N, Nie Y B, Xia X C, He Z H.Distribution of allelic variations of polyphenol oxidase genes in Xinjiang wheat cultivars.J Triticeae Crops, 2008, 28: 766-771 (in Chinese with English abstract)
[40] 王荣栋, 孔军, 陈荣毅, 张伟. 新疆小麦品质生态区划. 新疆农业科学, 2005, 42: 309-314
doi: 10.3969/j.issn.1001-4330.2005.05.005
Wang R D, Kong J, Chen R Y, Zhang W.Classification on Xinjiang wheat regions based on ecological quality.Xinjiang Agric Sci, 2005, 42: 309-314 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-4330.2005.05.005
[41] 曹霞, 王亮, 冯毅, 徐红军, 穆培源, 张晓科, 张影全. 新疆小麦品种春化和光周期主要基因的组成分析. 麦类作物学报, 2010, 30: 601-606
doi: 10.7606/j.issn.1009-1041.2010.04.003
Cao X, Wang L, Feng Y, Xu H J, Mu P Y, Zhang X K, Zhang Y Q.Combination of vernalization and photoperiod main genes in Xinjiang wheat.J Triticeae Crops, 2010, 30: 601-606 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2010.04.003
[42] Mahfoozi S, Limin A E, Hayes P M, Hucl P, Fowler, D B.Influence of photoperiod response on the expression of cold hardiness in wheat and barley.Can J Plant Sci, 2000, 80: 721-724
doi: 10.4141/P00-031
[43] Rasheed A, Xia X, Mahmood T, Ouraishi U M, Aziz A, Bux H, Mahmood Z, Mirza J I, Mujeeb-Kazi A, He Z.Comparison of economically important loci in landraces and improved wheat cultivars from Pakistan.Crop Sci, 2016, 56: 287-301
doi: 10.2135/cropsci2015.01.0015
[44] Hao C, Wang L, Ge H, Dong Y, Zhang X.Genetic diversity and linkage disequilibrium in 407 Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279
[1] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[2] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[3] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[4] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[5] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[6] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[7] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[8] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[9] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[10] Fang-Quan WANG,Fang-Jun FAN,Shi-Jian XIA,Shou-Yu ZONG,Tian-Qing ZHENG,Jun WANG,Wen-Qi LI,Yang XU,Zhi-Hui CHEN,Yan-Jie JIANG,Ya-Jun TAO,Wei-Gong ZHONG,Jie YANG. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agronomica Sinica, 2020, 46(3): 317-329.
[11] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[12] HAO Zhi-Ming,GENG Miao-Miao,WEN Shu-Min,YAN Gui-Jun,WANG Rui-Hui,LIU Gui-Ru. Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat [J]. Acta Agronomica Sinica, 2020, 46(02): 179-193.
[13] HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16 [J]. Acta Agronomica Sinica, 2020, 46(02): 157-165.
[14] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[15] Wen-Jie SI,Lin-Nan WU,Li-Jian GUO,Meng-Die ZHOU,Xiang-Li LIU,Meng MA,Hui-Xian ZHAO. Development and validation of the functional marker of grain weight-related gene TaCYP78A5 in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1905-1911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!