Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 836-843.doi: 10.3724/SP.J.1006.2018.00836

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping QTLs against Leaf Rust in CIMMYT Wheat C615

Yu-Ling LI1,Zheng-Ning JIANG2,Wen-Jing HU2,Dong-Sheng LI2,Jing-Ye CHENG3,Xin YI1,Xiao-Ming CHENG2,Rong-Lin WU2,Shun-He CHENG1,2,*()   

  1. 1 Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2 Lixiahe Institute of Agriculture Sciences of Jiangsu Province / Branch of National Wheat Improvement Center, Yangzhou 225007, Jiangsu, China
    3 Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2017-09-26 Accepted:2018-03-25 Online:2018-06-12 Published:2018-04-08
  • Contact: Shun-He CHENG E-mail:yzcsh1939@126.com
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-03-03B);This study was supported by the China Agriculture Research System(CARS-3-2-11);the Independent Innovation Fund for Agricultural Science and Technology in Jiangsu Province(CX(14)5080);the Natural Science Foundation of Jiangsu Province(BK20171279)

Abstract:

Leaf rust, caused by Puccinia triticina, is an important wheat disease. The introduced wheat line C615 shows adult resistance to leaf rust, but its mechanism is not clear. In this study, the quantitative trait loci (QTLs) for leaf rust resistance were identified and located in a linkage map constructed with 337 SSR markers using a recombinant inbred line (RIL) population (112 lines of the F2:7 generation) derived from CIMMYT wheat C615 (resistant) and Ningmai 18 (highly susceptible). Final disease severity (FDS) of leaf rust was evaluated in 2016 and 2017. Five QTLs were detected on chromosomes 1BL, 2DS, 3BS, 4DL, and 6BS, designated QLr.njau-1BL, QLr.njau-2DS, QLr.njau-3BS, QLr.njau-4DL, and QLr.njau-6BS, respectively. All the resistance alleles were contributed by the resistant parent C615, except for QLr.njau-2DS. Three QTLs, QLr.njau-1BL, QLr.njau-3BS, and QLr.njau-4DL, were detected in both years, which explained phenotypic variance by 10.1%-15.7%, 10.9%-13.5%, and 8.2%-9.0%, respectively. The remaining two QTLs were detected in one year with smaller contributions (6.2% and 9.2%, respectively). QLr.njau-1BL and QLr.njau-4DL were located in the same regions of the known resistance genes Lr46 and Lr67, respectively. QLr.njau-3BS in the marker interval Xbarc102-Xwmc623 is probably a novel QTL for leaf rust resistance. Fifteen BC4F5 lines derived from the cross of C615/Yangmai 13 (recurrent parent) were genotyped for leaf rust resistance using seven SSR markers closely linked to the QTLs from C615. All the 15 lines had QTLs donated by C615 and three of them pyramided four QTLs, indicating that C615 can serve as an elite donor parent in wheat breeding aiming at high-yield and high-resistance to leaf rust. These results provide a basis of marker-assisted selection and providing breeding materials.

Key words: wheat (Triticum aestivum L.), leaf rust, QTL mapping, marker-assisted selection

Fig.1

Leaf rust resistance of Ningmai 18 (A), Yangmai 13 (B), and C615 (C) at adult stage"

Fig. 2

Frequency distributions of RILs in final leaf rust severity in 2016 and 2017 The final disease severities of parents were 5% for C615 and 100% for Ningmai 18."

Table 1

Final disease severity of leaf rust in parents and their RILs"

年份
Year
亲本 Parent RIL群体 RIL population
C615
(%)
宁麦18
Ningmai 18 (%)
范围
Range (%)
均值
Mean (%)
标准差
SD (%)
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2016 5 100 5-100 55.41 22.67 38.52 -0.61 -0.53
2017 5 100 3-100 46.72 22.41 51.05 0.11 -0.72

Table 2

QTL mapping result for leaf rust resistance"

位点
QTL
标记区间
Marker interval
年份
Year
LOD 加性效应
Additive effect
贡献率
Phenotypic variance explained (%)
QLr.njau-1BL Xwmc728-Xbarc80 2016 4.98 -8.55 15.7
Xgwm140-Xbarc80 2017 4.34 -9.62 10.1
QLr.njau-2DS Xgwm296-GPW4080 2017 2.54 6.58 6.2
QLr.njau-3BS Xbarc102-Xwmc623 2016 4.92 -7.95 13.5
2017 3.95 -7.78 10.9
QLr.njau-4DL Xgwm165-Xcfd71 2016 2.93 -5.68 9.0
2017 3.52 -6.87 8.2
QLr.njau-6BS Xmag1424-Xmag1200.1 2016 4.18 -5.30 9.2

Fig. 3

Chromosomal locations of QTLs for leaf rust resistance in C615/Ningmai 18 RIL population"

Table 3

Resistance of the C615/Ningmai 18 RILs in different QTL-composition genotypes"

QTL组成
QTL composition
家系数
Number of lines
最终严重度 Final disease severity (%)
2016 2017 平均 Mean
None 14 85.6 a 78.6 a 82.1 a
QLr.njau-4DL 19 79.8 a 70.4 a 75.1 a
QLr.njau-3BS 10 65.7 b 51.0 b 58.4 b
QLr.njau-1BL 11 62.3 bc 50.6 b 56.5 bc
QLr.njau-1BL+QLr.njau-4DL 15 50.0 cd 45.0 b 47.5 bc
QLr.njau-3BS+QLr.njau-4DL 16 42.2 d 40.0 bc 41.1 cd
QLr.njau-1BL+QLr.njau-3BS 18 36.5 d 26.9 c 31.7 d
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL 9 21.1 e 11.1 d 16.1 e

Fig. 4

Comparison of final disease severity between RILs with or without the QLr.njau-3BS locus Final disease severity was the mean value of two years. In the RIL population, 53 and 59 lines were QLr.njau-3BS and non-QLr.njau-3BS genotype, respectively."

Table 4

QTL composition of 15 backcross lines and their genotypes of leaf rust resistance"

抗性QTL组成
Composition of resistance QTL
轮回亲本或株系
Recurrent parent or line
最终病害严重度 Final disease severity (%)
2016 2017
None 扬麦13 Yangmai 13 100 100
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL+QLr.njau-6BS BL-1 5.0 5.0
BL-2 10.0 5.0
BL-3 10.0 8.3
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL BL-4 10.0 8.3
BL-5 10.0 10.0
BL-6 15.0 10.0
QLr.njau-1BL+ QLr.njau-4DL+QLr.njau-6BS BL-7 15.0 15.0
QLr.njau-1BL+QLr.njau-3BS BL-8 10.0 20.0
BL-9 15.0 15.0
BL-10 20.0 20.0
QLr.njau-1BL + QLr.njau-6BS BL-11 20.0 25.0
QLr.njau-3BS+QLr.njau-4DL BL-12 25.0 20.0
BL-13 25.0 25.0
QLr.njau-1BL + QLr.njau-6BS BL-14 25.0 25.0
QLr.njau-1BL BL-15 31.7 25.0
[1] Khan M H, Bukhari A, Dar Z A, Rizvi S M . Status and strategies in breeding for rust resistance in wheat. Agric Sci, 2013,4:292-301
doi: 10.4236/as.2013.46042
[2] Singh D, Mohler V, Park R F . Discovery, characterization and mapping of wheat leaf rust resistance gene Lr71. Euphytica, 2013,190:131-136
doi: 10.1007/s10681-012-0786-x
[3] Zhang P P, Yin G H, Zhou Y, Qi A Y, Gao F M, Xia X C, He Z H, Li Z F, Liu D Q , QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers. Front Plant Sci, 2017,8:793-805
doi: 10.3389/fpls.2017.00793
[4] Do Vale F X R, Parlevliet J E, Zambolim L . Concepts in plant disease resistance. Trop Plant Pathol, 2001,26:577-589
[5] Spielmeyer W, Mcintosh R J, Lagudah E . Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet, 2005,111:731-735
doi: 10.1007/s00122-005-2058-9 pmid: 15965649
[6] Bariana H S, Hayden M J, Ahmed N U , BellJ A, Sharp P J, McIntosh R A. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res, 2001,52:1247-1255
doi: 10.1071/ar01040
[7] Suenaga K, Singh R P, Huertaespino J, William H M . Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 2003,93:881-890
doi: 10.1094/PHYTO.2003.93.7.881 pmid: 18943170
[8] Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B . Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet, 2004,108:477-484
[9] Schnurbusch T, Bossolini E, Messmer M, Keller B . Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology, 2004,94:1036-1041
doi: 10.1094/PHYTO.2004.94.10.1036 pmid: 18943790
[10] Zhang P P, Zhang Y Q, Han B, Gao P, Liu L, Xing L, Li Z F, Liu D Q . QTL mapping of adult-plant resistance genes to leaf rust and stripe rust in CIMMYT wheat Kingbird and PBW343. J Henan Agric Sci, 2014,54:1907-1925
[11] William M, Singh R P, Huerta-Espino J, Islas S O, Hoisington D . Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93:153-159
doi: 10.1094/PHYTO.2003.93.2.153 pmid: 18943129
[12] Singh R P, Mujeebkazi A, Huertaespino J . Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998,88:890-894
[13] Lan C, Basnet B R, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Ren Y, Randhawa M S. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theor Appl Genet, 2017,130:609-619
doi: 10.1007/s00122-016-2839-3 pmid: 28004134
[14] Herrera-Foessel S A, Lagudah E S, Huertaespino J, Hayden M J, Bariana H S . New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011,122:239-249
doi: 10.1007/s00122-010-1439-x pmid: 20848270
[15] Hiebert C W, Thomas J B , McCallum B D, Humphreys D G, De Pauw R M, Hayden M J, Mago R, Schnippenkoetter W, Spielmeyer W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust ( Lr67). Theor Appl Genet, 2010,121:1083-1091
doi: 10.1007/s00122-010-1373-y pmid: 20552325
[16] Herrera-Foessel S A, Singh R P, Huerta-Espino J, Rosewarne G M, Periyannan S K, Viccars L, Calvo-Salazar V, Lan C, Lagudah E S . Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet, 2012,124:1475-1486
doi: 10.1007/s00122-012-1802-1 pmid: 22297565
[17] Li Z F, Lan C X, He Z H, Singh R P, Rosewarne M R, Chen X M, Xia X C . Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014,54:1907-1925
doi: 10.2135/cropsci2014.02.0162
[18] Rosewarne G M, Singh R P, Huerta-Espino J, Rebetzke G J . Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet, 2008,116:1027-1034
doi: 10.1007/s00122-008-0736-0 pmid: 18335201
[19] Crossa J, Burgueño J, Dreisigacker S, Vargas M , Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historicalbread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007,177:1889-1913
doi: 10.1534/genetics.107.078659 pmid: 17947425
[20] Ren Y, Li Z, He Z H , W Ling, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012,125:1253-1262
doi: 10.1007/s00122-012-1910-y pmid: 22806327
[21] Zhou H X, Xia X C, He Z H, LI X, Wang C F, Li Z F, Liu D Q . Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang 977671. Theor Appl Genet, 2013,126:2141-2147
doi: 10.1007/s00122-013-2124-7 pmid: 23689746
[22] 彭红, 吕国强, 王江蓉 . 河南省2015 年小麦主要病害发生特点及原因分析. 中国植保导刊, 2016,36(4):29-33
Peng H, Lyu G Q, Wang J R . Analysis on the characteristics and causes of main diseases of wheat in Henan province in 2015. China Plant Prot, 2016,36(4):29-33 (in Chinese)
[23] Peterson R F, Campbell A B, Hannah A E . A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948,26:496-500
[24] 张晓祥, 王玲, 寿路路 . 一种快速提取小麦基因组DNA的改良CTAB方法. 中国农学通报, 2012,28(36):46-49
Zhang X X, Wang L, Shou L L . A rapid modified CTAB method of extracting genomic DNA from wheat leaf. Chin Agric Sci Bull, 2012,28(36):46-49 (in Chinese with English abstract)
[25] 张利军, 李在峰 , Morten L, 夏先春, 刘大群, 杨文香, 罗家传, 王海燕. CIMMYT小麦品种Saar的叶锈成株抗性QTL分析. 中国农业科学, 2009,42:388-397
doi: 10.3864/j.issn.0578-1752.2009.02.002
Zhang L J, Li Z F, Morten L, Xia X C, Liu D Q, Yang W X, Luo J C, Wang H Y . QTL Mapping for adult-plant resistance to leaf rust in CIMMYT wheat cultivar Saar. Sci Agric Sin, 2009,42:388-397 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.02.002
[26] Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5
[27] William H M, Singh R P, Huertaespino J, Palacios G, Suenaga K . Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome, 2006,49:977-990
doi: 10.1139/g06-052
[28] Rosewarne G M, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Theor Appl Genet, 2012,124:1283-1294
doi: 10.1007/s00122-012-1786-x pmid: 22274764
[29] Messmer M M, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B . Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet, 2000,100:419-431
doi: 10.1007/s001220050055
[30] Singh R P, Mcintosh R A . Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum: I. Genetic and linkage studies. Genome, 2011,26:723-735
[31] Calvo-Salazar, SinghR P, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz, Sandoval-Islas S, Vargas-Hernandez M, German S, Silva P, Basnet B R, Lan C X, Herrera-Foessel S A. Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Dis, 2015,99:1153-1159
doi: 10.1094/PDIS-07-14-0718-RE
[32] Singh R P, Huerta-Espino J, William H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish J Agric For, 2005,29:121-127
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[4] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[5] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[6] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[7] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[8] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[9] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[10] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[11] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[12] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[13] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[14] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[15] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!