Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 70-80.doi: 10.3724/SP.J.1006.2019.82036

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Analysis in agronomic and physiological traits of green super rice

Yang-Dong XU,Kuan-Yu ZHU,Xing-Chuan ZHANG,Zhi-Qin WANG,Jian-Chang YANG()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-07-08 Accepted:2018-10-08 Online:2018-11-08 Published:2018-11-08
  • Contact: Jian-Chang YANG E-mail:jcyang@yzu.edu.cn
  • Supported by:
    This study was supported by the National High Technology Research and Development Program of China(2014AA10A600);the National Natural Science Foundation of China(31461143015);the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);the Top Talent Supporting Program of Yangzhou University(2015-01)

Abstract:

Understanding agronomic and physiological characteristics of green super rice (GSR) is essential to make strategies for breeding GSR varieties and crop management. This study aimed to identify major agronomic and physiological traits associated with high grain yield and high nitrogen use efficiency (NUE) of rice. Four GSR varieties and two control varieties (one super rice variety and one non-super rice inbred) were grown in the paddy field. The results showed that the GSR varieties produced higher grain yield and higher NUE than control varieties. Synchronous increases in both total spikelet number and filled-grain percentage contributed to higher grain yield, and an increase in grain yield production per unit absorbed N (internal NUE) resulted in higher NUE for GSR. Compared with control varieties, GSR varieties exhibited greater percentage of productive tillers and the ratio of spikelet number to leaf area, higher ratio of sugar amount to spikelet number at the heading time, higher crop growth rate, net assimilate rate, and root oxidation activity and more remobilization of assimilates from stems and sheaths to grains during the grain filling period, and higher harvest index at maturity. These traits were positively and very significantly correlated with both grain yield and internal NUE, and could be used as indexes for breeding and selecting GSR varieties.

Key words: green super rice (GSR), grain yield, internal nitrogen use efficiency, population quality, physiological trait

Table 1

Grain yield and its components of green super rice"

年/品种
Year/variety
产量
Grain yield
(t hm-2)
穗数
Panicle number (m2)
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×103 m-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
2016
扬粳4038 YJ-4 (CK1) 8.75 b 263 b 141 a 37.1 cd 85.8 c 28.5 bc
武运粳24 WYJ-24 9.81 a 288 a 139 a 40.0 b 88.4 b 27.4 f
连粳7号 LJ-7 9.43 b 310 a 124 b 38.4 c 90.9 a 27.6 ef
宁粳1号 NJ-1 (CK2) 8.68 b 299 a 122 b 36.5 d 85.4 c 28.0 de
淮稻13 HD-13 9.78 a 266 b 142 a 37.8 c 88.4 b 29.2 a
武运粳30 WYJ-30 9.86 a 288 a 146 a 42.0 a 87.6 b 27.9 de
2017
扬粳4038 YJ-4 (CK1) 9.05 b 261 b 143 a 37.3 cd 84.8 c 28.7 b
武运粳24 WYJ-24 9.61 a 292 a 137 a 40.0 b 88.8 b 27.6 ef
连粳7号 LJ-7 9.69 a 314 a 122 b 38.3 c 91.3 a 27.4 f
宁粳1号 NJ-1 (CK2) 8.62 b 297 a 124 b 36.8 d 84.4 c 28.2 cd
淮稻13 HD-13 9.88 a 268 b 144 a 38.6 c 88.0 b 29.4 a
武运粳30 WYJ-30 9.94 a 292 a 142 a 41.5 a 87.4 b 27.7 ef
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS
品种FF for variety (V) 15.7** 11.8** 8.65** 20.7** 10.2** 3.67*
年×品种FF for Y × V NS NS NS NS NS NS

Table 2

Total amount of nitrogen (N) uptake and N use efficiency of green super rice"

年/品种
Year/variety
总吸氮量
Total N uptake
(kg hm-2)
植株氮素籽粒生产效率
Internal N use efficiency
(kg kg-1 N)
每百kg籽粒的需氮量
N uptake per 100 kg grain
[kg (100 kg)-1 grain]
氮肥偏生产力
Patial factory
productivity
(kg kg-1)
2016
扬粳4038 YJ-4 (CK1) 190 a 46.1 b 2.17 a 43.8 b
武运粳24 WYJ-24 191 a 50.6 a 1.98 b 49.1 a
连粳7号 LJ-7 188 a 50.2 a 1.99 b 47.2 a
宁粳1号 NJ-1 (CK2) 192 a 45.2 b 2.21 a 43.4 b
淮稻13 HD-13 191 a 51.2 a 1.95 b 48.9 a
武运粳30 WYJ-30 194 a 51.4 a 1.95 b 49.3 a
2017
扬粳4038 YJ-4 (CK1) 194 a 46.6 b 2.14 a 45.3 b
武运粳24 WYJ-24 195 a 50.1 a 2.00 b 48.1 a
连粳7号 LJ-7 192 a 50.5 a 1.98 b 48.5 a
宁粳1号 NJ-1 (CK2) 190 a 45.4 b 2.20 a 43.1 b
淮稻13 HD-13 193 a 51.2 a 1.95 b 49.4 a
武运粳30 WYJ-30 192 a 51.2 a 1.95 b 49.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS
品种FF for variety (V) NS 8.48** 8.04** 15.27**
年×品种FF for Y × V NS NS NS NS

Table 3

Percentage of productive stems and tillers (PPST), leaf area index (LAI), and grain-leaf (leaf area, LA) ratio of green super rice"

年/品种
Year/variety
茎蘖成穗率
PPST
(%)
抽穗期LAI
LAI at heading
(m2 m-2)
颖花/叶面积
Spikelet/LA
(spikelets cm-2)
实粒/叶面积
Filled grain/LA
(grains cm-2)
总粒重/叶面积
Total grain Wt/LA
(mg cm-2)
2016
扬粳4038 YJ-4 (CK1) 71.3 b 7.15 a 0.519 cd 0.445 b 12.2 b
武运粳24 WYJ-24 79.2 a 7.32 a 0.546 ab 0.487 a 13.4 a
连粳7号 LJ-7 76.8 a 6.95 a 0.553 ab 0.501 a 13.6 a
宁粳1号 NJ-1 (CK2) 72.3 b 7.03 a 0.519 cd 0.443 b 12.3 b
淮稻13 HD-13 78.5 a 6.86 a 0.551 ab 0.484 a 14.3 a
武运粳30 WYJ-30 80.9 a 7.38 a 0.569 a 0.501 a 13.4 a
2017
扬粳4038 YJ-4 (CK1) 73.7 b 7.27 a 0.513 d 0.435 b 12.4 b
武运粳24 WYJ-24 78.2 a 7.24 a 0.552 ab 0.487 a 13.3 a
连粳7号 LJ-7 78.4 a 7.09 a 0.540 bc 0.495 a 13.7 a
宁粳1号 NJ-1 (CK2) 71.3 b 7.29 a 0.505 d 0.426 b 11.8 b
淮稻13 HD-13 79.7 a 7.04 a 0.548 ab 0.491 a 14.0 a
武运粳30 WYJ-30 79.5 a 7.24 a 0.573 a 0.499 a 13.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS
品种FF for variety (V) 6.85** NS 5.76** 11.5** 7.63**
年×品种F F for Y × V NS NS NS NS NS

Table 4

Aboveground biomass and crop growth rate (CGR) of green super rice"

年/品种
Year/variety
干物质重 Biomass (t hm-2) 作物生长速率 CGR (g m-2 d-1)
分蘖期
Tillering (T)
拔节期
Jointing (J)
抽穗期
Heading (H)
成熟期
Maturity (M)
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
2016
扬粳4038 YJ-4 (CK1) 0.64 e 3.51 a 9.72 a 15.4 cd 13.1 c 17.8 a 12.1 d
武运粳24 WYJ-24 0.72 ab 3.67 a 9.95 a 16.5 ab 13.6 ab 18.0 a 13.1 b
连粳7号 LJ-7 0.68 cd 3.55 a 9.68 a 15.9 bc 13.3 bc 17.6 a 13.1 b
宁粳1号 NJ-1 (CK2) 0.63 e 3.45 a 9.49 a 14.8 d 12.6 d 17.5 a 11.6 e
淮稻13 HD-13 0.74 a 3.68 a 9.95 a 16.5 ab 13.6 ab 17.9 a 13.7 a
武运粳30 WYJ-30 0.73 ab 3.67 a 9.89 a 16.9 a 13.5 abc 17.8 a 14.0 a
2017
扬粳4038 YJ-4 (CK1) 0.68 cd 3.57 a 9.84 a 16.0 bc 13.1 c 17.9 a 12.6 bc
武运粳24 WYJ-24 0.70 bc 3.73 a 10.0 a 16.3 ab 13.8 a 18.0 a 12.8 b
连粳7号 LJ-7 0.66 de 3.63 a 9.84 a 16.5 ab 13.5 abc 17.7 a 13.6 a
宁粳1号 NJ-1 (CK2) 0.65 de 3.37 a 9.59 a 15.6 c 12.4 d 17.8 a 12.3 cd
淮稻13 HD-13 0.70 bc 3.76 a 9.99 a 16.9 a 13.9 a 17.8 a 14.1 a
武运粳30 WYJ-30 0.75 a 3.73 a 9.99 a 16.7 a 13.5 abc 17.9 a 13.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS NS
品种FF for variety (V) 4.89** NS NS 3.52* 3.46* NS 14.5**
年×品种FF for Y × V NS NS NS NS NS NS NS

Table 5

Green leaf area duration (GLAD) and net assimilate rate (NAR) of green super rice"

年/品种
Year/variety
绿叶面积持续期 GLAD (m2 m-2 d-1) 净同化速率 NAR (g m-2 d-1)
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
2016
扬粳4038 YJ-4 (CK1) 57.2 a 204 a 222 a 5.03 b 3.05 a 2.67 de
武运粳24 WYJ-24 55.8 a 205 a 228 a 5.36 a 3.07 a 2.81 c
连粳7号 LJ-7 55.8 a 198 a 219 a 5.24 a 3.11 a 2.94 b
宁粳1号 NJ-1 (CK2) 55.8 a 200 a 221 a 4.97 b 3.06 a 2.56 f
淮稻13 HD-13 55.3 a 197 a 217 a 5.42 a 3.18 a 3.11 a
武运粳30 WYJ-30 54.6 a 204 a 231 a 5.43 a 3.06 a 2.98 b
2017
扬粳4038 YJ-4 (CK1) 58.5 a 208 a 226 a 4.94 b 3.01 a 2.73 cde
武运粳24 WYJ-24 54.9 a 202 a 227 a 5.52 a 3.12 a 2.76 cd
连粳7号 LJ-7 55.1 a 200 a 222 a 5.39 a 3.10 a 3.00 b
宁粳1号 NJ-1 (CK2) 57.5 a 207 a 227 a 4.73 b 3.00 a 2.65 ef
淮稻13 HD-13 56.4 a 201 a 221 a 5.42 a 3.10 a 3.13 a
武运粳30 WYJ-30 56.1 a 204 a 226 a 5.31 a 3.07 a 2.97 b
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS
品种FF for variety (V) NS NS NS 5.35** NS 6.64**
年×品种F F for Y × V NS NS NS NS NS NS

Table 6

Remobilization of non-structural carbohydrates (NSC) sugar-spikelet ratio and harvest index of green super rice"

年/品种
Year/variety
茎与鞘中NSC
NSC in stems and sheaths (g m-2)
NSC转运率
NSC remobilization
(%)
抽穗期糖花比
NSC per spikelet
at heading
(mg spikelet-1)
收获指数
Harvest
index
(×100)
抽穗期
Heading
成熟期
Maturity
2016
扬粳4038 YJ-4 (CK1) 194 de 138 cd 28.9 b 5.23 b 48.9 cd
武运粳24 WYJ-24 230 bc 143 ab 37.8 a 5.75 a 51.1 a
连粳7号 LJ-7 229 bc 136 cd 40.6 a 5.96 a 51.0 a
宁粳1号 NJ-1 (CK2) 190 e 133 de 30.0 b 5.21 b 49.4 c
淮稻13 HD-13 225 c 131 e 41.8 a 5.95 a 50.6 ab
武运粳30 WYJ-30 245 a 140 bc 42.9 a 5.83 a 50.2 b
2017
扬粳4038 YJ-4 (CK1) 198 d 140 bc 29.3 b 5.31 b 48.6 d
武运粳24 WYJ-24 234 b 145 a 38.0 a 5.85 a 50.7 ab
连粳7号 LJ-7 233 b 140 bc 39.9 a 6.08 a 50.5 ab
宁粳1号 NJ-1 (CK2) 188 e 129 e 31.4 b 5.11 b 48.5 d
淮稻13 HD-13 223 c 129 e 42.2 a 5.78 a 50.8 ab
武运粳30 WYJ-30 241 a 138 cd 42.7 a 5.81 a 51.2 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS
品种FF for variety (V) 11.5** 5.21** 10.4** 11.2** 12.6**
年×品种F F for Y × V NS NS NS NS NS

Fig. 1

Root dry weight (A, B) and root-shoot ratio (C, D) at heading time and root oxidation activity during grain filling (E, F) of green super rice Values in the figure are expressed as means ± standard error (n = 3). Different letters on the column indicate statistical significance at P = 0.05 within the same measurement date. NS means not significant at P = 0.05. YJ-4: Yangjing 4038; WYJ-24: Wuyunjing 24; LJ-7: Lianjing 7; NJ-1: Ningjing 1; HD-13: Huaidao 13: WYJ-30: Wuyunjing 30; EGF: early grain filling; MGF: mid grain filling; LGF: late grain filling."

Fig. 2

Relationship of root oxidation activity (ROA) with crop growth rate (A), net assimilate rate (B), and seed-setting rate (C) in rice Values are calculated from the data from Tables 1, 4, and 5 and Figure 1; ** Significant at P = 0.01 (n = 12)."

Table 7

Correlation coefficients (r) of some agronomic and physiological traits with grain yield and internal nitrogen use efficiency (IEN) in rice"

性状
Trait
r
产量 Grain yield IEN
茎蘖成穗率 Percentage of productive stems and tillers 0.99** 0.97**
抽穗期糖花比 Sugar-spikelet ratio at heading time 0.89** 0.93**
颖花/叶面积 (粒叶比) Spikelets/leaf area (grain-leaf ratio) 0.90** 0.92**
灌浆期作物生长速率 Crop growth rate during grain filling 0.91** 0.92**
灌浆期净同化速率 Net assimilate rate during grain filling 0.85** 0.88**
灌浆期根系氧化力 Root oxidation activity during grain filling 0.91** 0.90**
茎中同花物转运率 Percentage of assimilate remobilization from stems 0.92** 0.96**
收获指数 Harvest index 0.88** 0.89**
[1] FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016. . FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016. .
[2] 余四斌, 熊银, 肖景华, 罗利军, 张启发 . 杂交稻与绿色超级稻. 科学通报, 2016,61:3797-3803.
doi: 10.1360/N972016-01092
Yu S B, Xiong Y, Xiao J H, Luo L J, Zhang Q F . Hybrid rice and green super rice. Chin Sci Bull, 2016,61:3797-3803 (in Chinese with English abstract).
doi: 10.1360/N972016-01092
[3] Peng S B, Tang Q Y, Zou Y B . Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
doi: 10.1626/pps.12.3
[4] 张启发 . 资源节约型、环境友好型农业生产体系的理论与实践. 北京: 科学出版社, 2015. pp 1-15.
Zhang Q F. Theory and Practice of Resource-saving and Environment-friendly Agricultural Production System. Beijing: Science Press, 2015. pp 1-15(in Chinese).
[5] Zhang Q F . Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104:16402-16409.
doi: 10.1073/pnas.0708013104
[6] 张启发 . 绿色超级稻的构想与实践. 北京: 科学出版社, 2010. pp 1-32.
Zhang Q F. Strategies and Practice for Developing Green Super Rice. Beijing: Science Press, 2010. pp 1-32(in Chinese).
[7] Wang F, Peng S B . Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric, 2017,16:1000-1008.
doi: 10.1016/S2095-3119(16)61561-7
[8] 彭少兵 . 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014,44:845-850.
doi: 10.1360/052014-98
Peng S B . Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014,44:845-850 (in Chinese with English abstract).
doi: 10.1360/052014-98
[9] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H . Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol, 2007,49:1445-1454.
doi: 10.1111/j.1672-9072.2007.00555.x
[10] Pucher G W, Leavenworth C S, Vickery H B . Determination of starch in plant tissues. Analyt Chem, 1948,20:850-853.
doi: 10.1021/ac50100a004
[11] Yoshida S, Forno D, Cock J, Gomez K . Laboratory Manual for Physiological Studies of Rice. The Philippines: International Rice Research Institute, 1976. pp 14-20.
[12] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H . An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009,49:2246-2260.
doi: 10.2135/cropsci2009.02.0099
[13] Yang J C, Zhang J H . Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010,61:3177-3189.
doi: 10.1364/AO.36.000144 pmid: 20421195
[14] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H . Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016,193:54-69.
doi: 10.1016/j.fcr.2016.03.006
[15] 张自常, 徐云姬, 褚光, 王志琴, 王学明, 刘立军, 杨建昌 . 不同灌溉方式下的水稻群体质量. 作物学报, 2011,37:2011-2019.
doi: 10.3724/SP.J.1006.2011.02011
Zhang Z C, Xu Y J, Chu G, Wang Z Q, Wang X M, Liu L J, Yang J C . Population quality of rice under different irrigation regimes. Acta Agron Sin, 2011,37:2011-2019 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02011
[16] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H . Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011,123:170-182.
doi: 10.1016/j.fcr.2011.05.015
[17] Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q S . Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci, 2002,42:766-772.
[18] Yang J C, Zhang J H, Wang Z Q, Zhu Q S . Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul, 2003,41:185-195.
doi: 10.1023/B:GROW.0000007503.95391.38
[19] 凌启鸿, 杨建昌 . 水稻群体“粒叶比”与高产栽培途径研究. 中国农业科学, 1986,19(3):1-8.
Ling Q H, Yang J C . Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin, 1986,19(3):1-8 (in Chinese with English abstract).
[20] 杨建昌 . 水稻粒叶比与产量的关系. 江苏农学院学报, 1993,14(专刊):11-14.
Yang J C . Relationship between grain-leaf ratio and grain yield of rice. J Agric Coll, 1993,14(Special issue):11-14 (in Chinese with English abstract).
[21] 凌启鸿 . 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 42-216.
Ling Q H. Crop population Quality. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 42-216(in Chinese).
[22] Yang J C . Approaches to achieve high yield and high resource use efficiency in rice. Front Agric Sci Eng, 2015,2:115-123.
doi: 10.15302/J-FASE-2015055
[23] Li H W, Liu L J, Wang Z Q, Yang J C, Zhang J H . Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012,133:119-129.
doi: 10.1016/j.fcr.2012.04.005
[24] Kato T, Takeda K . Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996,36:1135-1139.
doi: 10.2135/cropsci1996.0011183X003600050011x
[25] Fageria N K . Yield physiology of rice. J Plant Nutr, 2007,30:843-879.
doi: 10.1080/15226510701374831
[26] Yang J C, Zhang H, Zhang J H . Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012,11:920-926.
doi: 10.1016/S2095-3119(12)60082-3
[27] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H . Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014,162:108-119.
doi: 10.1016/j.fcr.2014.06.026
[28] Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T . A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci Plant Nutr, 1997,37:445-454.
doi: 10.1007/978-94-009-0047-9_215
[29] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M . Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004,50:545-554.
doi: 10.1080/00380768.2004.10408511
[30] Yang J C, Zhang J H . Grain-filling problem in “super” rice. J Exp Bot, 2010,61:1-5.
doi: 10.1093/jxb/erp348
[31] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H . Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013,150:9-18.
doi: 10.1016/j.fcr.2013.06.002
[32] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H . Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015,175:47-59.
doi: 10.1016/j.fcr.2015.02.007
[33] Chu G, Wang Z Q, Zhang H, Yang J C, Zhang J H . Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016,108:117-128.
doi: 10.2134/agronj15.0310
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[4] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[5] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[6] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[7] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[8] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[9] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[10] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[11] DING Yong-Gang,LI Fu-Jian,WANG Ya-Hua,TANG Xiao-Qing,DU Tong-Qing,ZHU Min,LI Chun-Yan,ZHU Xin-Kai,DING Jin-Feng,GUO Wen-Shan. Characteristics of yield components and population quality in high-nitrogen- utilization wheat cultivars [J]. Acta Agronomica Sinica, 2020, 46(4): 544-556.
[12] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[13] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[14] Ming-Sheng MA, Xian-Shi GUO, Yan-Lan LIU. Effects of full biodegradable film on soil water status and yield and water use efficiency of spring wheat in dryland [J]. Acta Agronomica Sinica, 2020, 46(12): 1933-1944.
[15] LIAO Ping,LIU Lei,HE Yu-Xuan,TANG Gang,ZHANG Jun,ZENG Yong-Jun,WU Zi-Ming,HUANG Shan. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system [J]. Acta Agronomica Sinica, 2020, 46(01): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!