Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1080-1089.doi: 10.3724/SP.J.1006.2019.84160

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress

YU Qi1,FENG Nai-Jie1,WANG Shi-Ya1,ZUO Guan-Qiang1,ZHENG Dian-Feng1,2,*()   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2 National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2018-11-26 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-08
  • Contact: Dian-Feng ZHENG E-mail:byndzdf@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871576);the National Key Technology Support Program of China for the 12th Five-Year Plan(2014BAD07B05)

Abstract:

Waterlogging stress is one of the main abiotic stresses during the growth and development of crops. It is of great significance to explore the mechanisms for improving the flood resistance and waterlogging resistance cultivation of mung bean under waterlogging stress. In this experiment, the effects of uniconazole (S3307) on physiology, photosynthesis and yield of mung bean leaves under waterlogging stress were investigated in pot culture with different flood resistance mung bean varieties Lufeng 2 and Lufeng 5 from 2017 to 2018. Under the stress of waterlogging at different growth stages, the chlorophyll content (SPAD) and photosynthetic characteristic parameters of mung beans leaves were significantly decreased, malondialdehyde (MDA) content was significantly increased. The yield reduction rate of mung beans under the stress of waterlogging was 24.70%-33.63% at the beginning bloom (R1 stage), and 18.07%-28.87% at the beginning seed (R5 stage). Both mung bean varieties showed that the effect of waterlogging stress at R1 stage was greater than that at R5 stage, and the flood resistance of Lufeng 2 was stronger than that of Lufeng 5. After S3307 sprayed, SPAD, net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) in the leaves of mung beans could be significantly increased and MDA content could be significantly decreased. The remission rate of mung beans under waterlogging stress was 28.91%-52.34% at R1 stage, and 13.77%-27.36% at R5 stage. The results showed that S3307 sprayed on the leaf surface could effectively alleviate the physiological function and photosynthetic capacity of mung bean leaves under the stress of waterlogging, thus reduce the yield reduction, but there were differences in the regulatory response of mung bean varieties to S3307 in different waterlogging periods.

Key words: mung bean, uniconazole (S3307), waterlogging stress, photosynthesis, yield

Fig. 1

Effects of S3307 on the SPAD of mung bean leaves at R1 and R5 stages under waterlogging stress R1CK: the beginning bloom control; R1W: exposed to waterlogging stress after spraying water at the beginning bloom; R1W+S: exposed to waterlogging stress after spraying S3307 at the beginning bloom; R5CK: the beginning seed control; R5W: exposed to waterlogging stress after spraying water at the beginning seed; R5W+S: exposed to waterlogging stress after spraying S3307 at the beginning seed. R1-0: spayed water or S3307 at the beginning bloom; R1-5: 5 d after the beginning bloom (5 d after spayed water or S3307); R1-10: 10 d after the beginning bloom (5 d after waterlogging stress); R1-15: 15 d after the beginning bloom (recovered 5 d), R5-0: spayed water or S3307 at the beginning seed; R5-5: 5 d after the beginning seed (5 d after spayed water or S3307); R5-10: 10 d after the beginning seed (5 d after waterlogging stress); R5-15: 15 d after the beginning seed (recovered 5 d). Values of SPAD within the same day with different letters are significantly different at the 0.05 probalility level."

Fig. 2

Effects of S3307 on the MDA content of mung bean leaves at R1 and R5 stages under waterlogging stress Abbreviations are the same as those given in Fig. 1. Values of MDA content within the same day with different letters are significantly different at the 0.05 probalility level."

Fig. 3

Effects of S3307 on the photosynthetic rate of mung bean leaves at R1 and R5 stages under waterlogging stress Abbreviations are the same as those given in Fig. 1. Values of the photosynthetic rate within the same day with different letters are significantly different at the 0.05 probalility level."

Fig. 4

Effects of S3307 on the transpiration rate of mung bean leaves at R1 and R5 stages under waterlogging stress Abbreviations are the same as those given in Fig. 1. Values of the transpiration rate within the same day with different letters are significantly different at the 0.05 probalility level."

Fig. 5

Effects of S3307 on the stomatal conductance of mung bean leaves at R1 and R5 stages under waterlogging stress Abbreviations are the same as those given in Fig. 1. Values of the stomatal conductance within the same day with different letters are significantly different at the 0.05 probalility level."

Fig. 6

Effects of S3307 on the intercellular CO2 concentration of mung bean leaves at R1 and R5 stages under waterlogging stress Abbreviations are the same as those given in Fig. 1. Values of the intercellular CO2 concentration within the same day with different letters are significantly different at the 0.05 probalility level."

Table 1

Effects of S3307 on yield and yield components of mung bean at R1 and R5 stages under waterlogging stress in 2017"

品种
Cultivar
处理
Treatment
单株荚数
Pods per plant
单荚粒数
Seeds per pod
百粒重
Hundred grain weight (g)
单株产量
Yield per plant (g)
绿丰2号
Lufeng 2
R1CK 18.55 ± 1.32 a 7.91 ± 0.43 a 3.60 ± 0.10 a 4.78 ± 0.06 a
R1W 13.25 ± 0.35 b 7.46 ± 0.29 a 3.69 ± 0.27 a 3.60 ± 0.46 b
R1W+S 19.70 ± 0.44 a 7.60 ± 0.27 a 3.76 ± 0.05 a 4.77 ± 0.09 a
绿丰5号
Lufeng 5
R1CK 16.45 ± 1.12 a 9.23 ± 0.62 a 5.12 ± 0.01 a 7.19 ± 0.11 a
R1W 11.35 ± 0.69 b 8.36 ± 0.57 a 4.56 ± 0.06 b 5.07 ± 0.09 c
R1W+S 17.75 ± 0.48 a 8.75 ± 0.34 a 5.21 ± 0.05 a 6.53 ± 0.05 b
绿丰2号
Lufeng 2
R5CK 18.55 ± 1.17 a 7.85 ± 0.42 a 3.65 ± 0.12 a 5.12 ± 0.11 a
R5W 18.50 ± 0.31 a 6.73 ± 0.16 b 3.21 ± 0.06 b 4.04 ± 0.86 b
R5W+S 18.70 ± 0.72 a 7.66 ± 0.42 a 3.66 ± 0.09 a 5.15 ± 0.03 a
绿丰5号
Lufeng 5
R5CK 16.45 ± 1.01 a 9.02 ± 0.59 a 5.44 ± 0.09 a 6.93 ± 0.08 a
R5W 16.50 ± 0.66 a 7.64 ± 0.38 b 4.07 ± 0.25 b 5.18 ± 0.30 c
R5W+S 16.75 ± 0.48 a 8.20 ± 0.32 ab 4.44 ± 0.03 b 6.26 ± 0.09 b

Table 2

Effects of S3307 on yield and yield components of mung bean at R1 and R5 stages under waterlogging stress in 2018"

品种
Cultivar
处理
Treatment
单株荚数
Pods per plant
单荚粒数
Seeds per pod
百粒重
Hundred grain weight (g)
单株产量
Yield per plant (g)
绿丰2号
Lufeng 2
R1CK 19.25 ± 0.94 a 7.71 ± 0.33 a 3.62 ± 0.06 a 4.87 ± 0.04 a
R1W 13.75 ± 0.40 b 7.31 ± 0.47 a 3.63 ± 0.27 a 3.55 ± 0.33 b
R1W+S 20.05 ± 0.28 a 7.45 ± 0.25 a 3.64 ± 0.06 a 4.75 ± 0.09 a
绿丰5号
Lufeng 5
R1CK 16.70 ± 0.91 a 8.65 ± 0.45 a 5.20 ± 0.02 a 7.26 ± 0.08 a
R1W 11.90 ± 0.93 b 7.10 ± 0.36 b 5.28 ± 0.09 a 4.82 ± 0.12 b
R1W+S 18.00 ± 0.51 a 8.16 ± 0.44 ab 5.33 ± 0.05 a 7.34 ± 0.04 a
绿丰2号
Lufeng 2
R5CK 19.25 ± 0.94 a 7.71 ± 0.33 a 3.62 ± 0.06 b 4.87 ± 0.04 a
R5W 19.00 ± 0.41 a 6.80 ± 0.12 b 3.95 ± 0.06 a 3.99 ± 0.08 c
R5W+S 19.60 ± 0.56 a 7.31 ± 0.31 ab 3.58 ± 0.12 b 4.54 ± 0.05 b
绿丰5号
Lufeng 5
R5CK 16.70 ± 0.91 a 8.65 ± 0.45 a 5.20 ± 0.02 a 7.26 ± 0.08 a
R5W 16.30 ± 1.00 a 7.20 ± 0.49 c 5.02 ± 0.26 a 5.16 ± 0.31 c
R5W+S 16.85 ± 0.67 a 8.00 ± 0.28 b 5.07 ± 0.02 a 6.25 ± 0.06 b

Table 3

Yield reduction rate and remission rate of yield per plant of mung beans under waterlogging stress in 2017-2018 (%)"

品种
Cultivar
时期
Stage
2017 2018
减产率
Yield reduction rate
缓解率
Remission rate
减产率
Yield reduction rate
缓解率
Remission rate
绿丰2号
Lufeng 2
R1 -24.70 32.40 -27.16 34.08
R5 -21.03 27.36 -18.07 13.77
绿丰5号
Lufeng 5
R1 -29.54 28.91 -33.63 52.34
R5 -25.35 20.86 -28.87 21.18
[1] Chen L R, Ko C Y, Folk W R, Lin T Y . Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. Bot Stud, 2017,58, doi: 10.1186/s40529-017- 0161-2.
[2] Noble T, Douglas C, Williams R, Williams B, Mundree S. Development of the mungbean nested association mapping (NAM) resource. In: InterDrought V, 21-25 February 2017, Hyderabad, India. pp 21-25. .
[3] Kumawat N, Kumar R, Sharma O P . Nutrient uptake and yield of mungbean Vigna radiata(L.) Wilczek as influenced by organic manures, PSB and phosphorus fertilization. Environ Ecol, 2009,27:2002-2005.
[4] Bhanu A N, Singh M N, Srivastava K . Screening mungbean [Vigna radiata(L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition. Plants Agric Res, 2017,7:00276.
[5] Ren B, Dong S, Zhao B, Liu P, Zhang J . Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01216.
[6] Xu Q T, Yang L, Zhou Z Q, Mei F Z, Qu L H, Zhou G S . Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta, 2013,238:969-982.
doi: 10.1007/s00425-013-1947-4
[7] Shabala S . Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011,190:289-298.
[8] Voesenek L A, Sasidharan R . Ethylene- and oxygen signaling- drive plant survival during flooding. Plant Biol, 2013,15:426-435.
doi: 10.1111/plb.2013.15.issue-3
[9] Shabala S, Shabala L, Barcelo J, Poschenrieder C . Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ, 2015,37:2216-2233.
[10] Zhang H J, Li N H, Cheng X Z, Katinka W . The impact of mungbean research in China. World Vegetable Center, Taiwan (AVRDC), China, 2003, .
[11] 张娇, 王东勇, 朱佳宁, 郑媛媛, 姚叶青 . 淮河流域持续性强降水的重要前期信号. 气象, 2011,37:1329-1335.
Zhang J, Wang D Y, Zhu J N, Zheng Y Y, Yao Y Q . The precursor signals of persistent and strong precipitation along the Huaihe River Valley. Meteorol Monthly, 2011,37:1329-1335 (in Chinese with English abstract).
[12] Normile D . Reinventing rice to feed the world. Science, 2008,321:330-333.
doi: 10.1126/science.321.5887.330
[13] 周珺, 魏虹, 吕茜, 李昌晓, 王振夏, 高伟, 陈伟 . 土壤水分对湿地松幼苗光合特征的影响. 生态学杂志, 2012,31:30-37.
Zhou J, Wei H, Lyu Q, Li C X, Wang Z X, Gao W, Chen W . Effects of soil water regime on leaf photosynthetic characteristics of slash pine (Pinus elliottii Engelm.) seedlings. Chin J Ecol, 2012,31:30-37 (in Chinese with English abstract).
[14] 孙小艳, 陈铭, 李彦强, 吴照祥, 钟永达, 余发新 . 淹水胁迫下北美鹅掌楸无性系生理生化响应差异. 植物生理学报, 2018,54:473-482.
Sun X Y, Chen M, Li Y Q, Wu Z X, Zhong Y D, Yu F X . Variations in physiological and biochemical responses in clones of Liriodendron tulipifera under flooding stress. Plant Physiol J, 2018,54:473-482 (in Chinese with English abstract).
[15] 曹昀, 郑祥, 杨阳, 陈冰祥, 国志昌, 吴海英 . 淹水对灰化苔草幼苗生长及抗氧化物酶活性的影响. 生态学杂志, 2016,35:3273-3278.
Cao Y, Zheng X, Yang Y, Chen B X, Guo Z C, Wu H Y . Effects of waterlogging on the growth and antioxidant enzyme activity of Carex cinerascens seedlings. Chin J Ecol, 2016,35:3273-3278 (in Chinese with English abstract).
[16] 僧珊珊, 王群, 张永恩, 李潮海, 刘天学, 赵龙飞, 刘怀攀 . 外源亚精胺对淹水胁迫玉米的生理调控效应. 作物学报, 2012,38:1042-1050.
Seng S S, Wang Q, Zhang Y E, Li C H, Liu T X, Zhao L F, Liu H P . Effects of exogenous spermidine on physiological regulatory of maize after waterlogging stress. Acta Agron Sin, 2012,38:1042-1050 (in Chinese with English abstract).
[17] 余卫东, 冯利平, 胡程达, 彭记永 . 苗期涝渍对黄淮地区夏玉米生长和产量的影响. 生态学杂志, 2015,34:2161-2166.
Yu W D, Feng L P, Hu C D, Peng J Y . Effects of waterlogging during seedling stage on the growth and yield of summer maize in Huang-Huai region. Chin J Ecol, 2015,34:2161-2166 (in Chinese with English abstract).
[18] 李彩霞, 周新国, 王和州, 郭冬冬, 郭树龙, 陈金平, 姜新 . 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响. 麦类作物学报, 2013,33:1232-1236.
Li C X, Zhou X G, Wang H Z, Guo D D, Guo S L, Chen J P, Jiang X . Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage. J Trit Crops, 2013,33:1232-1236 (in Chinese with English abstract).
[19] Duhan S, Kumari A, Bala S, Sharma N, Sheokand S . Effects of waterlogging, salinity and their combination on stress indices and yield attributes in pigeonpea (Cajanus cajan L. Millsp.) genotypes. Ind J Plant Physiol, 2018,23:1-12.
[20] 李金航, 郭丽丽, 孔祥生, 张淑玲, 闫臻 . 6-BA和GA3对牡丹叶片衰老过程中生理特性的影响. 植物生理学报, 2014,50:1243-1247.
Li J H, Guo L L, Kong X S, Zhang S L, Yan Z . Effects of 6-BA and GA3 on physiological characteristics during leaf senescence of Paeonia suffruticosa, Plant Physiol J, 2014,50:1243-1247 (in Chinese with English abstract).
[21] Noguchli H . New plant growth regulators and S-3307D. Jpn Pestic Inf, 1987,51:15-22.
[22] Zhen H L, Yan Z H, Feng L J . Effects of chlormequat chloride on the growth and endogenous hormones contents of Dahlia pinnata and their correlation analysis. Prat Sci, 2012,29:76-82.
[23] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰 . 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响. 中国油料作物学报, 2016,38:611-618.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F . Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress. Chin J Oil Crop Sci, 2016,38:611-618 (in Chinese with English abstract).
[24] Spent J E, Hume D J, Kumudini S V . Soybean yield potential: a genetic and physiological perspective. Crop Sci, 1999,39:1560-1570.
doi: 10.2135/cropsci1999.3961560x
[25] 刘洋, 郑殿峰, 冯乃杰, 张盼盼, 陈文浩, 张红梅 . 鼓粒期叶施烯效唑对绿豆各器官糖分积累及籽粒产量的影响. 中国农学通报, 2015,31(30):143-148.
Liu Y, Zheng D F, Feng N J, Zhang P P, Chen W H, Zhang H M . Effect of foliar spraying uniconazole in seed filling period on sugar accumulation in various organs and grain yield of mung bean. Chin Agric Bull, 2015,31(30):143-148 (in Chinese with English abstract).
[26] Wan Y, Luo Q M, Yan Y H, Yang W Y, Cao X N . Response of morphological characters of soybean to application of growth retardant (uniconazole) at third trifoliate stage. Res Crops, 2013,14:792-797.
[27] Yan Y H, Gong W Z, Yang W Y, Wan Y, Chen X L, Chen Z Q, Wang L Y . Seed treatment with uniconazole powder improve soybean seedling growth under shading by corn in relay strip intercropping system. Plant Prod Sci, 2010,13:367-374.
doi: 10.1626/pps.13.367
[28] 曾红, 王小春, 陈国鹏, 陈诚, 蒲甜, 彭霄, 刘婷, 宋靖, 阳苏书, 杨文钰 . 喷施烯效唑对玉米-大豆套作群体株型及产量的影响. 核农学报, 2016,30:1420-1426.
Zeng H, Wang X C, Chen G P, Chen C, Pu T, Peng X, Liu T, Song J, Yang S S, Yang W Y . Effects of spraying uniconazole on morphological and yield of groups in maize-soybean strip intercropping system. J NucI Agric Sci, 2016,30:1420-1426 (in Chinese with English abstract).
[29] 杨文钰, 于振文, 余松烈, 樊高琼, 韩惠芳, 董兆勇, 梁雪莲 . 烯效唑干拌种对小麦的增产作用. 作物学报, 2004,30:502-506.
Yang W Y, Yu Z W, Yu S L, Fan G Q, Han H F, Dong Z Y, Liang X L . Effect of uniconazole waterless-dressing seed on yield of wheat. Acta Agron Sin, 2004,30:502-506 (in Chinese with English abstract).
[30] Gawad M H, Batal M A . Response of maize productivity to the growth retardant “Uniconazole” under high nitrogen fertilization and plant density. Early Popular Visual Culture, 1996,10:553-556.
[31] Kumar G N M, Knowles N R . Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol, 1993,102:115-124.
[32] Liu X Z, Huang B R . Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci, 2000,40:503-510.
doi: 10.2135/cropsci2000.402503x
[33] 高小丽, 孙健敏, 高金锋, 冯佰利, 柴岩, 贾志宽 . 不同基因型绿豆叶片光合性能研究. 作物学报, 2007,33:1154-1161.
Gao X L, Sun J M, Gao J F, Feng B L, Chai Y, Jia Z K . Photosynthetic performance in the leaves of different mung bean genotypes. Acta Agron Sin, 2007,33:1154-1161 (in Chinese with English abstract).
[34] 曹旖旎, 蔡泽宇, 李晓刚, 张建锋, 陈光才 . 土壤淹水和铜污染对杞柳形态及生理生化特性的影响. 生态学杂志, 2018, doi: 10.13292/j.1000-4890.201902.017.
Cao Y N, Cai Z Y, Li X G, Zhang J F, Chen G C . Effects of flooding and copper stress on phenotypic and physiological characteristics of Salix integra seedlings. Chin J Ecol, 2018, doi: 10.13292/j.1000-4890.201902.017 (in Chinese with English abstract).
[35] 孟娜, 徐航, 魏明, 魏胜华 . 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响. 西北植物学报, 2017,37:1988-1995.
Meng N, Xu H, Wei M, Wei S H . Effect of foliar uniconazole spaying under salt stress on physiological and anatomical characteristics in Glycine max. Acta Bot Boreali-Occident Sin, 2017,37:106-113 (in Chinese with English abstract).
[36] 孙福东, 冯乃杰, 郑殿峰, 崔洪秋, 刘春娟, 何天明, 赵晶晶 . 植物生长调节剂S3307和DTA-6对大豆荚的生理代谢及GmAC的影响. 中国农业科学, 2016,49:1267-1276.
Sun F D, Feng N J, Zheng D F, Cui H Q, Liu C J, He T M, Zhao J J . Effects of plant growth regulators S3307 and DTA-6 on physiological metabolism and GmAC gene expression in soybean. Sci Agric Sin, 2016,49:1267-1276 (in Chinese with English abstract).
[37] Chen H J, Qualls R G, Blank R R . Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat Bot, 2005,82:260-268.
[38] 王畅, 赵海东, 冯乃杰, 郑殿峰, 梁晓艳, 齐德强, 李建英, 韩毅强, 黄文婷 . S3307和DTA-6对芸豆生殖生长阶段光合特性和产量的影响. 草业学报, 2018,27(11):162-170.
Wang C, Zhao H D, Feng N J, Zheng D F, Liang X Y, Qi D Q, Li J Y, Han Y Q, Huang W T . Effects of S3307 and DTA-6 on the photosynthetic characteristics and yield of kidney bean plants in the reproductive stage. Acta Pratac Sin, 2018,27(11):162-170 (in Chinese with English abstract).
[39] 宮相伟, 刘春娟, 冯乃杰, 郑殿峰, 王畅 . S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017,53:1867-1876.
Gong X W, Liu C J, Feng N J, Zheng D F, Wang C . Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Plant Physiol J, 2017,53:1867-1876 (in Chinese with English abstract).
[40] 李宁毅, 时彦平, 王吉振 . 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响. 西北植物学报, 2012,32:1626-1631.
Li N Y, Shi Y P, Wang J Z . Effect of Uniconazole on photosynthetic characters and leaf anatomical structure of zinnia seedings under water stress. Acta Bot Boreali-Occident Sin, 2012,32:1626-1631 (in Chinese with English abstract).
[41] Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osorio M L, Carvalho I, Faria T, Pinheiro C . How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot, 2002,89:907-916.
doi: 10.1093/aob/mcf105
[42] Antonio O V, Francisco G S, Silvia S G, Inmaculada S, Vicente L, Manuel N, Juan J M N . Physiological responses of three pomegranate cultivars under flooded conditions. Sci Hortic, 2017,224:171-179.
doi: 10.1016/j.scienta.2017.06.013
[43] 汪惠芳, 陈润兴 . S3307对秋大豆株型和产量的影响. 植物生理学通讯, 1997,33:181-183.
Wang H F, Chen R X . The effect of S3307 on plant-form and yield of autumn soybean. Plant Physiol Commun, 1997,33:181-183 (in Chinese with English abstract).
[44] Linkemer G, Board J E, Musgrave M E . Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci, 1998,38:1576-1584.
doi: 10.2135/cropsci1998.0011183X003800060028x
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!