Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1238-1249.doi: 10.3724/SP.J.1006.2019.81084
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei()
[1] |
Ladha J K, Pathak H P, Krupnik T J, Six J, Kessel C V . Efficiency of fertilizer nitrogen in cereal production: retrospect and prospect. Adv Agron, 2005,87:85-156.
doi: 10.1016/S0065-2113(05)87003-8 |
[2] | Hatfield J L, Gitelson A A, Schepers J S, Walthall C L . Application of spectral remote sensing for agronomic decisions. Agron J, 2008,100:117-131. |
[3] |
Lemaire G, Jeuffroy M H, Gastal F . Diagnosis tool for plant and crop N status in vegetative stage. Eur J Agron, 2008,28:614-624.
doi: 10.1016/j.eja.2008.01.005 |
[4] |
Mistele B, Schmidhalter U . Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur J Agron, 2008,29:184-190.
doi: 10.1016/j.eja.2008.05.007 |
[5] | Plénet D, Lemaire G . Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil, 2000,216:65-82. |
[6] | 李卫国, 赵春江, 王纪华, 刘良云 . 遥感和生长模型相结合的小麦长势监测研究现状与展望. 国土资源遥感, 2007, (2):6-9. |
Li W G, Zhao C J, Wang J H, Liu L Y . Research situation and prospects of wheat condition monitoring based on growth model and remote sensing. Remote Sens Land Resour, 2007, (2):6-9 (in Chinese with English abstract). | |
[7] |
Hansen P M, Schjoerring J K . Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003,86:542-553.
doi: 10.1016/S0034-4257(03)00131-7 |
[8] |
Huang J L, He F, Cui K H, Buresh R J, Xu B, Gong W H, Peng S B . Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008,105:70-80.
doi: 10.1016/j.fcr.2007.07.006 |
[9] | Justes E, Mary B, Jean-Marc M, Machet J M, Huché-Thélier L . Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot(London), 1994,74:397-407. |
[10] |
Zhao B, Ata-Ul-Karim S T, Liu Z D, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W . Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017,208:60-68.
doi: 10.1016/j.fcr.2017.03.010 |
[11] | He Z Y, Qiu X L, Ata-Ul-Karim S T, Li Y D, Liu X J, Cao Q, Zhu Y, Cao W X, Tang L . Development of a critical nitrogen dilution curve of double cropping rice in south China. Front Plant Sci, 2017,8:1-14. |
[12] |
Chen P F, Haboudane D, Tremblay N, Wang J H, Vigneault P, Li B G . New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens Environ, 2010,114:1987-1997.
doi: 10.1016/j.rse.2010.04.006 |
[13] |
Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U . Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany. Agric Forest Meteorol, 2013,180:44-57.
doi: 10.1016/j.agrformet.2013.05.003 |
[14] |
Feng W, Guo B B, Zhang H Y, He L, Zhang Y S, Wang Y H, Zhu Y J, Guo T C . Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crops Res, 2015,180:197-206.
doi: 10.1016/j.fcr.2015.05.020 |
[15] |
Gitelson A A, Kaufman Y J, Stark R, Rundquist D . Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002,80:76-87.
doi: 10.1016/S0034-4257(01)00289-9 |
[16] | 贺佳, 刘冰峰, 郭燕, 王来刚, 郑国清, 李军 . 冬小麦生物量高光谱遥感监测模型研究. 植物营养与肥料学报, 2017,23:313-323. |
He J, Liu B F, Guo Y, Wang L G, Zheng G Q, Li J . Biomass estimation model of winter wheat (Triticum aestivum L.) using hyperspectral reflectances. J Plant Nutr Fert, 2017,23:313-323 (in Chinese with English abstract). | |
[17] |
Mistele B, Schmidhalter U . Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat. Agron J, 2010,102:499-506.
doi: 10.2134/agronj2009.0282 |
[18] |
Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U . Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS J Photogramm, 2014,92:112-123.
doi: 10.1016/j.isprsjprs.2014.03.006 |
[19] | 马波, 田军仓 . 作物生长模拟模型研究综述. 节水灌溉, 2010, (2):1-5. |
Ma B, Tian J C . A review on crop growth simulation model research. Water Sav Irrig, 2010, (2):1-5 (in Chinese with English abstract). | |
[20] |
Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T . The DSSAT cropping system model. Eur J Agron, 2003,18:235-265.
doi: 10.1016/S1161-0301(02)00107-7 |
[21] |
Mccown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M . APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst, 1996,50:255-271.
doi: 10.1016/0308-521X(94)00055-V |
[22] | 王康, 沈荣开, 王富庆 . 冬小麦生长及根系吸氮的动态模拟研究. 灌溉排水学报, 2002,21(1):6-10. |
Wang K, Shen R K, Wang F Q . Dynamic simulation research of winter wheat growth and root nitrogen uptake. J Irrig Drain, 2002,21(1):6-10 (in Chinese with English abstract). | |
[23] | 曹静, 刘小军, 汤亮, 曹卫星, 朱艳 . 稻麦适宜氮素营养指标动态的模型设计. 应用生态学报, 2010,21:359-364. |
Cao J, Liu X J, Tang L, Cao W X, Zhu Y . Model designing for suitable nitrogen index dynamics of rice and wheat. Chin J Appl Ecol, 2010,21:359-364 (in Chinese with English abstract). | |
[24] | 庄东英, 李卫国, 武立权 . 冬小麦生物量卫星遥感估测研究. 干旱区资源与环境, 2013,27(10):158-162. |
Zhuang D Y, Li W G, Wu L Q . Estimating winter wheat biomass based on satellite remote sensing. J Arid Land Resour Environ, 2013,27(10):158-162 (in Chinese with English abstract). | |
[25] | 帅细强, 王石立, 马玉平, 李迎春 . 基于水稻生长模型的气象影响评价和产量动态预测. 应用气象学报, 2008,19:71-81. |
Shuai X Q, Wang S L, Ma Y P, Li Y C . Assessment of meteorologic condition effects and dynamic yield forecasting based on rice growth model. J Appl Meteorol Sci, 2008,19:71-81 (in Chinese with English abstract). | |
[26] |
Dorigo W A, Zurita-Milla R, de Wit A J W, Brazile J, Singh R, Schaepman M E . A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs, 2007,9:165-193.
doi: 10.1016/j.jag.2006.05.003 |
[27] |
Zheng B J, Myint S W, Thenkabail P S, Aggarwal R M . A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int J Appl Earth Obs, 2015,34:103-112.
doi: 10.1016/j.jag.2014.07.002 |
[28] | Shao Y, Ren J, Campbell J B . 9.04-Multitemporal remote sensing data analysis for agricultural application. Compreh Remote Sens, 2018,9:29-38. |
[29] |
Fischer A . A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ, 1994,48:220-230.
doi: 10.1016/0034-4257(94)90143-0 |
[30] |
Skakun S, Franch B, Vermote E, Roger J C, Beckerreshef I, Justice C, Kussul N . Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens Environ, 2017,195:244-258.
doi: 10.1016/j.rse.2017.04.026 |
[31] |
Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A . Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens Environ, 2015,161:131-148.
doi: 10.1016/j.rse.2015.02.014 |
[32] |
Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, Huete A . Monitoring vegetation phenology using MODIS. Remote Sens Environ, 2003,84:471-475.
doi: 10.1016/S0034-4257(02)00135-9 |
[33] |
Zheng H B, Cheng T, Yao X, Deng X Q, Tian Y C, Cao W X, Zhu Y . Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res, 2016,198:131-139.
doi: 10.1016/j.fcr.2016.08.027 |
[34] |
Russelle M P, Wilhelm W W, Olson R A, Power J F . Growth analysis based on degree days. Crop Sci, 1984,24:28-32.
doi: 10.2135/cropsci1984.0011183X002400010007x |
[35] |
McMaster G S, Smika D E . Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric Forest Meteorol, 1988,43:1-18.
doi: 10.1016/0168-1923(88)90002-0 |
[36] | Gitelson A A, Viña A, Ciganda A, Rundquist D C, Arkebauer T J . Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett, 2005,32:1-4. |
[37] |
Dash J, Curran P J . The MERIS terrestrial chlorophyll index. Int J Remote Sens, 2004,25:5403-5413.
doi: 10.1080/0143116042000274015 |
[38] |
Huete A R . A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 1988,25:295-309.
doi: 10.1016/0034-4257(88)90106-X |
[39] |
Zarco-Tejada P J, Miller J R, Noland T L, Mohammed G H . Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE T Geosci Remote, 2001,39:1491-1507.
doi: 10.1109/36.934080 |
[40] | Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In: NASA/GSFC, Type III Final Report, Greenbelt, MD, USA, 1974. pp 371-373. |
[41] |
Fitzgerald G J, Rodriguez D, Christensen L K, Belford R, Sadras V O, Clarke T R . Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis Agric, 2006,7:233-248.
doi: 10.1007/s11119-006-9011-z |
[42] | Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Vol. 2, 1972. pp 1357-1381. |
[43] | Gitelson A, Merzlyak M N . Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994,143:286-292. |
[44] | Guyot G, Baret F . Utilisation de la haute resolution spectrale pour suivre L’etat des couverts vegetaux. Spec Signat Object Remote, 1988,287:279. |
[45] |
Jiang Z, Huete A R, Didan K, Miura T . Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ, 2008,112:3833-3845.
doi: 10.1016/j.rse.2008.06.006 |
[46] |
Horler D N H, Dockray M, Barber J . The red edge of plant leaf reflectance. Int J Remote Sens, 1983,4:273-288.
doi: 10.1080/01431168308948546 |
[47] |
Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil D J . LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens Environ, 2011,115:2141-2151.
doi: 10.1016/j.rse.2011.04.018 |
[48] |
Hunt Jr E R, Doraiswamy P C, McMurtrey J E, Daughtry C S, Perry E M, Akhmedov B . A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs, 2013,21:103-112.
doi: 10.1016/j.jag.2012.07.020 |
[49] | 唐延林, 王人潮, 黄敬峰, 孔维姝, 程乾 . 不同供氮水平下水稻高光谱及其红边特征研究. 遥感学报, 2004,8:185-192. |
Tang Y L, Wang R C, Huang J F, Kong W S, Cheng Q . Hyperspectral data and their relationships correlative to the pigment contents for rice under different nitrogen support level. J Remote Sens, 2004,8:185-192 (in Chinese with English abstract). | |
[50] |
Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y . Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res, 2011,120:299-310.
doi: 10.1016/j.fcr.2010.11.002 |
[51] |
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G . Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002,83:195-213.
doi: 10.1016/S0034-4257(02)00096-2 |
[52] |
Li F, Miao Y X, Feng G H, Yuan F, Yue S C, Gao X W, Liu Y Q, Liu B, Ustin S L, Chen X P . Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res, 2014,157:111-123.
doi: 10.1016/j.fcr.2013.12.018 |
[53] |
Cho M A, Skidmore A, Corsi F, Wieren S E V, Sobhan I . Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Obs, 2007,9:414-424.
doi: 10.1016/j.jag.2007.02.001 |
[54] | 宋开山, 张柏, 李方, 段洪涛, 王宗明 . 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析. 农业工程学报, 2005,21(1):38-42. |
Song K S, Zhang B, Li F, Duan H T, Wang Z M . Correlative analyses of hyperspectral reflectance, soybean LAI and aboveground biomass. Trans CSAE, 2005,21(1):38-42 (in Chinese with English abstract). | |
[55] | 王秀珍, 黄敬峰, 李云梅, 王人潮 . 水稻地上鲜生物量的高光谱遥感估算模型研究. 作物学报, 2003,29:16-22. |
Wang X Z, Huang J F, Li Y M, Wang R C . Study on hyperspectral remote sensing estimation models for the ground fresh biomass of rice. Acta Agron Sin, 2003,29:16-22 (in Chinese with English abstract). | |
[56] | 焦险峰, 杨邦杰, 裴志远, 王飞 . 基于植被指数的作物产量监测方法研究. 农业工程学报, 2005,21(4):104-108. |
Jiao X F, Yang B J, Pei Z Y, Wang F . Monitoring crop yield using NOAA/AVHRR-based vegetation indices. Trans CSAE, 2005,21(4):104-108 (in Chinese with English abstract). | |
[57] | 王延颐 . 植被指数与水稻长势及产量结构要素关系的研究. 国土资源遥感, 1996, (1):56-59. |
Wang Y Y . The relationship between vegetation index and rice growth and rice yield components. Remote Sens Land Resour, 1996, (1):56-59 (in Chinese with English abstract). | |
[58] |
Dempewolf J, Adusei B, Becker-Reshef I, Hansen M, Potapov P, Khan A, Barker B . Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens, 2014,6:9653-9675.
doi: 10.3390/rs6109653 |
[59] |
Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y . Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric Forest Meteorol, 2011,151:385-393.
doi: 10.1016/j.agrformet.2010.11.012 |
[60] |
Ren J Q, Chen Z X, Zhou Q B, Tang H J . Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int J Appl Earth Obs, 2008,10:403-413.
doi: 10.1016/j.jag.2007.11.003 |
[61] | 黄楠, 王强, 王鹏, 张国庆, 刘凌菲 . 应用归一化植被指数的玉米产量预测研究. 黑龙江农业科学, 2014, (2):130-132. |
Huang N, Wang Q, Wang P, Zhang G Q, Liu L F . Maize yield prediction research based on the NDVI. Heilongjiang Agric Sci, 2014, (2):130-132 (in Chinese with English abstract). | |
[62] |
Wardlow B D, Egbert S L . Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sens Environ, 2008,112:1096-1116.
doi: 10.1016/j.rse.2007.07.019 |
[63] |
Chu L, Liu Q S, Huang C, Liu G H . Monitoring of winter wheat distribution and phenological phases based on MODIS time- series: a case study in the Yellow River Delta, China. J Integr Agric, 2016,15:2403-2416.
doi: 10.1016/S2095-3119(15)61319-3 |
[64] | 冯伟, 朱艳, 田永超, 姚霞, 郭天财, 曹卫星 . 基于高光谱遥感的小麦籽粒产量预测模型研究. 麦类作物学报, 2007,27:1076-1084. |
Feng W, Zhu Y, Tian Y C, Yao X, Guo T C, Cao W X . Model for predicting grain yield with canopy hyperspectal remote sensing in wheat. J Triticeae Crop, 2007,27:1076-1084 (in Chinese with English abstract). | |
[65] | 唐延林, 黄敬峰, 王人潮, 王福民 . 水稻遥感估产模拟模式比较. 农业工程学报, 2004,20(1):166-171. |
Tang Y L, Huang J F, Wang R C, Wang F M . Comparsion of yield estimation simulated models of rice by remote sensing. Trans CSAE, 2004,20(1):166-171 (in Chinese with English abstract). | |
[66] |
Johnson D M . An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens Environ, 2014,141:116-128.
doi: 10.1016/j.rse.2013.10.027 |
[67] |
Magney T S, Eitel J U H, Huggins D R, Vierling L A . Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric Forest Meteorol, 2016,217:46-60.
doi: 10.1016/j.agrformet.2015.11.009 |
[68] |
Ma H Y, Huang J X, Zhu D H, Liu J M, Su W, Zhang C, Fan J L . Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter. Math Comput Model, 2013,58:759-770.
doi: 10.1016/j.mcm.2012.12.028 |
[69] |
Fang H L, Liang S L, Hoogenboom G . Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int J Remote Sens, 2011,32:1039-1065.
doi: 10.1080/01431160903505310 |
[70] |
王绍中, 季书勤, 张德奇, 李秀民, 吕平安 . 河南省小麦栽培技术的演变与发展. 河南农业科学, 2007,36(10):19-26.
doi: 10.3969/j.issn.1004-3268.2007.10.005 |
Wang S Z, Ji S Q, Zhang D Q, Li X M, Lyu P A . Evolution and development of wheat cultivation techniques in Henan Province. J Henan Agric Sci, 2007,36(10):19-26.
doi: 10.3969/j.issn.1004-3268.2007.10.005 |
|
[71] | 王永华, 郭天财, 朱云集, 王晨阳, 康国章 . 河南省不同类型麦区小麦丰产高效栽培技术规程. 河南农业科学, 2006,35(5):14-18. |
Wang Y H, Guo T C, Zhu Y J, Wang C Y, Kang G Z . Regulations for high yield and high efficiency cultivation of wheat in different wheat regions of Henan province. J Henan Agric Sci, 2006,35(5):14-18 (in Chinese with English abstract). | |
[72] |
Duveiller G, Lopez-Lozano R, Cescatti A . Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: a demonstration for agricultural monitoring applications. Remote Sens Environ, 2015,166:61-77.
doi: 10.1016/j.rse.2015.06.001 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[3] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[4] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[5] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[6] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[7] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[8] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[9] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[10] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[11] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[12] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[13] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[14] | CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666. |
[15] | YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681. |
|