Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1217-1224.doi: 10.3724/SP.J.1006.2020.92060

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice

LI Jing-Lan,CHEN Xin-Xin,SHI Cui-Cui,LIU Fang-Hui,SUN Jing,GE Rong-Chao()   

  1. College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2019-11-25 Accepted:2020-03-24 Online:2020-08-12 Published:2020-04-21
  • Contact: Rong-Chao GE E-mail:grcgp@sina.com
  • Supported by:
    National Natural Science Foundation of China(30900104);Hebei Provincial Natural Science Foundation(C2016205158)

Abstract:

OsRPK1 is a leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene in rice, and its expression level decreases evidently after temporarily increasing under salt stress. Previous studies have shown that the overexpression of OsRPK1 can significantly reduce the abiotic stress tolerance of Arabidopsis. In this study, OsRPK1 gene was overexpressed and RNA interfered in rice. The salt tolerance of the 35S:OsRPK1 rice seedlings was significantly lower than that of the control plants. The OsRPK1-RNAi rice seedlings exhibited higher salt tolerance than the wild-type plants. The proline content of OsRPK1 overexpressed plants was lower than that of the wild type, MDA content and relative conductivity were significantly higher than those of the wild type, while the proline content of OsRPK1-RNAi rice plants was significantly higher than those of wild type, MDA content and relative conductivity were significantly lower than those of wild type. The results of this study indicate that OsRPK1 plays an important role in salt tolerance of rice. The changes of proline content and the damage degree of cytoplasmic membrane may be the internal reasons for the salt-tolerance variations of the transgenic rice lines. This study lays a foundation for further elucidating the resistance mechanism of OsRPK1 gene, which is very important for cultivating salt-tolerance rice by adjusting the expression of OsRPK1 gene.

Key words: rice, OsRPK1 genes, overexpressed, RNA interference, physiological indexes

Fig. 1

Changes of the expression of OsRPK1 gene in rice under 140 mmol L-1 NaCl stress The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

Fig. 2

qRT-PCR identify of the 35S:OsRPK1 plants and OsRPK1-RNAi plants The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

Fig. 3

Salt tolerance of the OsRPK1 overexpressing plants A: rice seedling without NaCl stress; B: treated with 140 mmol L-1 NaCl for 6 days; C: recovery for nine days after 140 mmol L-1 NaCl stress; D: survival rate after renewing culture under salt stress. The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

Fig. 4

Salt stress tolerance of the OsRPK1-RNAi rice plants A: rice seedling without NaCl stress; B: treated with 140 mmol L-1 NaCl for 10 days; C: recovery for seven days after 140 mmol L-1 NaCl stress; D, E: survival rate after renewing culture under salt stress. The significant difference was evaluated by the Student’s t-test. * P < 0.05, ** P < 0.01, *** P < 0.001."

Fig. 5

Proline content of transgenic rice plants after 140 mmol L-1 NaCl treatment The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

Fig. 6

MDA content of transgenic rice plants after 140 mmol L-1 NaCl treatment The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

Fig. 7

Relative electrical conductivity of transgenic rice plants The significant difference was evaluated by the Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001."

[1] Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophy Res Commun, 2017,495:286-291.
[2] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005,23(3):154-158.
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005,23(3):154-158 (in Chinese with English abstract).
[3] 张建峰, 张旭东, 周金星, 刘国华, 李冬雪. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005,12(6):28-30.
Zhang J F, Zhang X D, Zhou J X, Liu G H, Li D X. World resources of saline soil and main amelioratior measures. Res Soil Water Conserv, 2005,12(6):28-30 (in Chinese with English abstract).
[4] Lee S K, Kim B G, Kwon T R, Jeong M J, Park S R, Lee J W, Byun M O, Kwon H B, Matthews B F, Hong C B, Park S C. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice(Oryza sativa L.). J Biosci, 2011,36:139-151.
pmid: 21451255
[5] Xing H T, Guo P, Xia X L, Yin W L. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta, 2011,234:229-241.
pmid: 21399949
[6] Mondal T K, Rawal H C, Chowrasia S, Varshney D, Panda A K, Mazumdar A, Kaur H, Gaikwad K, Sharma T R, Singh N K. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci Rep, 2018,8:13698-13708.
pmid: 30209320
[7] 牛吉山. 植物和小麦蛋白激酶的研究现状. 西北植物学报, 2003,23:143-150.
Niu J S. Studies on plant and wheat protein kinases. Acta Bot Boreali-Occident Sin, 2003,23:143-150 (in Chinese with English abstract).
[8] Julie M S, John C W. Plant protein kinase families and signal transduction. Plant Physiol, 1995,108:451-457.
[9] Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, Hardtke C S. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci USA, 2013,110:7074-7079.
doi: 10.1073/pnas.1222314110 pmid: 23569225
[10] Bryan A C, Obaidi A, Wierzba M, Tax F E. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 2012,235:111-122.
pmid: 21853254
[11] Burr C A, Leslie M E, Orlowski S K, Chen I, Wright C E, Daniels M J, Liljegren S J. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol, 2011,156:1837-1850.
doi: 10.1104/pp.111.175224 pmid: 21628627
[12] Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J, 2007,50:751-766.
pmid: 17419837
[13] Engelsdorf T, Hamann T. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann Bot, 2014,114:1339-1347.
doi: 10.1093/aob/mcu043 pmid: 24723447
[14] Wu Y, Zhou J M. Receptor-like kinases in plant innate immunity. J Integr Plant Biol, 2013,55:1271-1286.
doi: 10.1111/jipb.12123 pmid: 24308571
[15] Phillips S M, Dubery I A, Heerden H. Identification and molecular characterisation of a lectin receptor-like kinase (GHLECRK-2) from cotton. Plant Mol Biol Rep, 2013,31:9-20.
[16] Singh P, Kuo Y C, Mishra S, Tsai C H, Chien C C, Chen C W, Desclos-Theveniau M, Chu P W, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell, 2012,24:1256-1270.
pmid: 22427336
[17] Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J: Cell Mol Biol, 2012,70:599-613.
[18] Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 2012,24:2546-2561.
doi: 10.1105/tpc.112.100107 pmid: 22730405
[19] Yuriko O, Shinji M, Hidenori T, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi- Shinozaki K. Overproduction of the membrane-bound receptor- like protein kinase1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem, 2010,285:9190-9201.
doi: 10.1074/jbc.M109.051938 pmid: 20089852
[20] Yang T, Chaudhuri S, Yang L, Du L, Poovaiah B W. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem, 2010,285:7119-7126.
doi: 10.1074/jbc.M109.035659 pmid: 20026608
[21] Sicilia A, Testa G, Santoro D F, Cosentino S L, Lo Piero A R. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC Plant Biol, 2019,19:355-379.
doi: 10.1186/s12870-019-1964-y pmid: 31416418
[22] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995,270:1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[23] Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci, 1994,19:415-421.
doi: 10.1016/0968-0004(94)90090-6 pmid: 7817399
[24] Jones D A, Jones J D G. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res, 1997,24:89-167.
[25] Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997,113:1203-1212.
doi: 10.1104/pp.113.4.1203 pmid: 9112773
[26] Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell, 2005,17:1105-1119.
doi: 10.1105/tpc.104.027474 pmid: 15772289
[27] Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Sci, 2014, 217-218:63-70.
doi: 10.1016/j.plantsci.2013.12.002 pmid: 24467897
[28] Wang J, Li C, Yao X, Liu S H, Zhang P Y, Chen K S. The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation. Polar Biol, 2018,41:353-364.
[29] Sun X, Sun M, Luo X, Ding X, Cai H, Bai X, Liu X, Zhu Y. A Glycine soja, ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta, 2013,237:1527-1545.
doi: 10.1007/s00425-013-1864-6 pmid: 23494614
[30] An S H, Choi H W, Hwang I S, Hong J K, Hwang B K. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. Plant Mol Biol, 2008,67:519-533.
doi: 10.1007/s11103-008-9337-1 pmid: 18427932
[31] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014,26:2538-2553.
doi: 10.1105/tpc.114.125187
[32] Liu S H, Wang J, Chen K S, Zhang Z H, Zhang P Y. The L-type lectin receptor-like kinase(PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis. Plant Growth Regul, 81:409-418.
doi: 10.1007/s10725-016-0217-4
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!