Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1217-1224.doi: 10.3724/SP.J.1006.2020.92060
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Jing-Lan,CHEN Xin-Xin,SHI Cui-Cui,LIU Fang-Hui,SUN Jing,GE Rong-Chao()
[1] | Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophy Res Commun, 2017,495:286-291. |
[2] | 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005,23(3):154-158. |
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005,23(3):154-158 (in Chinese with English abstract). | |
[3] | 张建峰, 张旭东, 周金星, 刘国华, 李冬雪. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005,12(6):28-30. |
Zhang J F, Zhang X D, Zhou J X, Liu G H, Li D X. World resources of saline soil and main amelioratior measures. Res Soil Water Conserv, 2005,12(6):28-30 (in Chinese with English abstract). | |
[4] |
Lee S K, Kim B G, Kwon T R, Jeong M J, Park S R, Lee J W, Byun M O, Kwon H B, Matthews B F, Hong C B, Park S C. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice(Oryza sativa L.). J Biosci, 2011,36:139-151.
pmid: 21451255 |
[5] |
Xing H T, Guo P, Xia X L, Yin W L. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta, 2011,234:229-241.
pmid: 21399949 |
[6] |
Mondal T K, Rawal H C, Chowrasia S, Varshney D, Panda A K, Mazumdar A, Kaur H, Gaikwad K, Sharma T R, Singh N K. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci Rep, 2018,8:13698-13708.
pmid: 30209320 |
[7] | 牛吉山. 植物和小麦蛋白激酶的研究现状. 西北植物学报, 2003,23:143-150. |
Niu J S. Studies on plant and wheat protein kinases. Acta Bot Boreali-Occident Sin, 2003,23:143-150 (in Chinese with English abstract). | |
[8] | Julie M S, John C W. Plant protein kinase families and signal transduction. Plant Physiol, 1995,108:451-457. |
[9] |
Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, Hardtke C S. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci USA, 2013,110:7074-7079.
doi: 10.1073/pnas.1222314110 pmid: 23569225 |
[10] |
Bryan A C, Obaidi A, Wierzba M, Tax F E. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 2012,235:111-122.
pmid: 21853254 |
[11] |
Burr C A, Leslie M E, Orlowski S K, Chen I, Wright C E, Daniels M J, Liljegren S J. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol, 2011,156:1837-1850.
doi: 10.1104/pp.111.175224 pmid: 21628627 |
[12] |
Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J, 2007,50:751-766.
pmid: 17419837 |
[13] |
Engelsdorf T, Hamann T. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann Bot, 2014,114:1339-1347.
doi: 10.1093/aob/mcu043 pmid: 24723447 |
[14] |
Wu Y, Zhou J M. Receptor-like kinases in plant innate immunity. J Integr Plant Biol, 2013,55:1271-1286.
doi: 10.1111/jipb.12123 pmid: 24308571 |
[15] | Phillips S M, Dubery I A, Heerden H. Identification and molecular characterisation of a lectin receptor-like kinase (GHLECRK-2) from cotton. Plant Mol Biol Rep, 2013,31:9-20. |
[16] |
Singh P, Kuo Y C, Mishra S, Tsai C H, Chien C C, Chen C W, Desclos-Theveniau M, Chu P W, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell, 2012,24:1256-1270.
pmid: 22427336 |
[17] | Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J: Cell Mol Biol, 2012,70:599-613. |
[18] |
Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 2012,24:2546-2561.
doi: 10.1105/tpc.112.100107 pmid: 22730405 |
[19] |
Yuriko O, Shinji M, Hidenori T, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi- Shinozaki K. Overproduction of the membrane-bound receptor- like protein kinase1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem, 2010,285:9190-9201.
doi: 10.1074/jbc.M109.051938 pmid: 20089852 |
[20] |
Yang T, Chaudhuri S, Yang L, Du L, Poovaiah B W. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem, 2010,285:7119-7126.
doi: 10.1074/jbc.M109.035659 pmid: 20026608 |
[21] |
Sicilia A, Testa G, Santoro D F, Cosentino S L, Lo Piero A R. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC Plant Biol, 2019,19:355-379.
doi: 10.1186/s12870-019-1964-y pmid: 31416418 |
[22] |
Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995,270:1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370 |
[23] |
Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci, 1994,19:415-421.
doi: 10.1016/0968-0004(94)90090-6 pmid: 7817399 |
[24] | Jones D A, Jones J D G. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res, 1997,24:89-167. |
[25] |
Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997,113:1203-1212.
doi: 10.1104/pp.113.4.1203 pmid: 9112773 |
[26] |
Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell, 2005,17:1105-1119.
doi: 10.1105/tpc.104.027474 pmid: 15772289 |
[27] |
Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Sci, 2014, 217-218:63-70.
doi: 10.1016/j.plantsci.2013.12.002 pmid: 24467897 |
[28] | Wang J, Li C, Yao X, Liu S H, Zhang P Y, Chen K S. The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation. Polar Biol, 2018,41:353-364. |
[29] |
Sun X, Sun M, Luo X, Ding X, Cai H, Bai X, Liu X, Zhu Y. A Glycine soja, ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta, 2013,237:1527-1545.
doi: 10.1007/s00425-013-1864-6 pmid: 23494614 |
[30] |
An S H, Choi H W, Hwang I S, Hong J K, Hwang B K. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. Plant Mol Biol, 2008,67:519-533.
doi: 10.1007/s11103-008-9337-1 pmid: 18427932 |
[31] |
Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014,26:2538-2553.
doi: 10.1105/tpc.114.125187 |
[32] |
Liu S H, Wang J, Chen K S, Zhang Z H, Zhang P Y. The L-type lectin receptor-like kinase(PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis. Plant Growth Regul, 81:409-418.
doi: 10.1007/s10725-016-0217-4 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|