Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1472-1480.doi: 10.3724/SP.J.1006.2021.02056

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9

ZHANG Bo(), PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui*()   

  1. Guangdong Provincial Key Laboratory of Plant Molecular Breeding/State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2020-08-17 Accepted:2021-01-13 Online:2021-08-12 Published:2021-02-25
  • Contact: WANG Shao-Kui E-mail:zhangboscau@163.com;shaokuiwang@scau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100406);Key Projects of Basic Research and Applied Basic Research of Guangdong Province(2019B030302006);Special Support Program of Guangdong Province for High-level Talents(2016TX03N224)

Abstract:

Rice grain size is a complex quantitative trait controlled by multiple genes. Grain size is an important factor affecting rice yield and quality. The mapping and genetic analysis of genes controlling rice grain size are essential for the concurrent improvement of rice yield and quality. Here 13 QTLs for grain size were detected using 153 rice single-segment substitution lines in rice, which were derived from HJX74 as the receptor parent, and IAPAR9 as the donor parent. One-way ANOVA and Duncan’s multiple comparison were employed to detect the genetic bases of rice grain size in two consecutive years. Based on the substitution mapping using overlapped substitution-fragment in the SSSLs, a total of 13 grain size-related QTLs were detected on chromosomes 1, 2, 4, 5, 6, 7, 9, and 11, including nine QTLs controlling grain length, one QTL controlling grain width, and three QTLs controlling 1000-grain weight. Furthermore, qGL1-2, qTGW1-2, and qGL11 were novel identified QTLs. This study provided new basis for cloning and functional analysis of genes regulating grain size.

Key words: rice, single segment substitution line, grain size, QTL mapping

Fig. 1

Grain size of IAPAR9 and HJX74 a, b: the grain shape of HJX74 and IAPAR9, Bar: 5 mm; c: the grain length of HJX74 and IAPAR9; d: the grain width of HJX74 and IAPAR9; e: the grain weight of HJX74 and IAPAR9. ** means significant difference in grain length, grain width and grain weight between HJX74 and IAPAR9 by Student’s t-test (P < 0.01)."

Table S1

Primers and the sequence of the primers"

标记名称
Marker
基因
Gene
序列
Sequence (5′-3′)
标记名称
Marker
基因
Gene
序列
Sequence (5′-3′)
xp14F LGY3 TGTCAACAGAAACCAGCAAAA RMw513F GW5 GTATTTGTTTGTCGCATTC
xp14R TGGTCGATCAATTCCTCTGC RMw513R TAGGACCATAGATGTGAGTTA
GS3R1 gs3 AGGCTGGCTTACTCGCTG RM574F GS5 GGCGAATTCTTTGCACTTGG
GS3R2 CAGCAGGCTGGCTTACTCTATT RM574R ACGGTTTGGTAGGGTGTCAC
GS3F CTGTATATATATTTCTTGCAGGGTG Indel-1F GW7 CCATAGTAAGACGACCTT
RM186F GL3.1 TCCTCCATCTCCTCCGCTCCCG Indel-1R GATATTCTGTCAGCAGTT
RM186R GGGCGTGGTGGCCTTCTTCGTC PSM710F gw8 GCCAGCCAAGAAAAGCGACA
PSM710R TCTTGAGATCCCACTCCATG

Fig. 2

DNA marker polymorphism of grain size between HJX74 and IAPAR9 The white lines indicate the target bands obtained by PCR, and the other bands are non-specific amplifications."

Fig. 3

Coverage of substitution fragments on rice chromosomes The genetic distance (cM) is shown as rulers on the left margin. Filled and open bars represent chromosomal segments homozygous for IAPAR9 and HJX74 alleles, respectively. The cloned genes are shown in blue font."

Table S2

The distribution of the substitution segment in the SSSLs"

染色体
Chr.
单片段材料数量
No. of SSSLs
代换片段总长度
TL (cM)
代换片段平均长度
CL (cM)
代换片段覆盖率
CP (%)
Chr. 1 30 571.00 19.03 59.16
Chr. 2 22 526.00 23.91 78.31
Chr. 3 4 112.40 28.10 35.21
Chr. 4 14 380.70 27.19 43.90
Chr. 5 12 179.30 14.94 53.98
Chr. 6 24 541.40 22.56 73.55
Chr. 7 7 75.20 10.74 19.27
Chr. 8 8 181.40 22.68 66.91
Chr. 9 9 256.70 28.52 85.03
Chr. 10 6 160.60 26.77 55.93
Chr. 11 16 320.60 20.04 60.04
Chr. 12 1 6.90 6.90 3.15
平均Mean 12.75 276.02 20.95 52.87

Fig. 4

Frequency distribution of grain length, width and 1000-grain weight in SSSLs and the parents in two seasons a-c: the frequency distribution of grain length, width, and 1000-grain weight in SSSLs and the parents in later season of 2018; d-f: the frequency distribution of grain length, width, and 1000-grain weight in SSSLs and the parents in early season of 2019."

Fig. 5

Chromosome location of 13 QTLs for grain shape and 1000-grain weight in rice The genetic distance is shown as rulers on the left margin. Black bars on the right of each chromosome are the location intervals of QTLs for grain size with their names on the right."

Table 1

Detection of the QTLs and additive effects for grain size in the SSSLs"

性状
Trait
位点
QTL
染色体
Chr.
区间
Marker interval
加性效应Additive effect PP-value
2018 2019 2018 2019
粒长Grain length qGL1-1 1 PSM13-RM84 -0.19 -0.11 0.0025 0.0188
qGL1-2 1 OSR23-RM104 0.30 0.31 0.0001 0.0005
qGL2 2 RM250-RM166 -0.19 -0.15 <0.0001 0.0029
qGL4 4 RM317-PSM110 -0.23 -0.15 0.0002 0.0081
qGL5 5 RM164-RM161 -0.19 -0.12 0.0002 0.0289
qGL6 6 PSM136-RM275 -0.22 -0.15 <0.0001 0.0227
qGL7 7 RM505-PSM432 0.37 0.43 0.0003 <0.0001
qGL9 9 PSM399-RM105 -0.20 -0.15 <0.0001 0.0084
qGL11 11 RM209-RM21 -0.17 -0.16 0.0005 0.0023
粒宽Grain width qGW2 2 RM263-RM525 0.09 0.08 0.0003 0.0039
千粒重1000-grain weight qTGW1-1 1 PSM13-RM84 -1.46 -1.32 <0.0001 0.0016
qTGW1-2 1 OSR23-RM104 0.65 1.25 0.0003 0.0011
qTGW4 4 RM127-RM280 -1.31 -1.45 <0.0001 <0.0001
[1] 杨维丰, 詹鹏麟, 林少俊, 苟亚军, 张桂权, 王少奎. 水稻粒形的遗传研究进展. 华南农业大学学报, 2019,40(5):203-210.
Yang W F, Zhan P L, Lin S J, Gou Y J, Zhang G Q, Wang S K. Research progress of grain shape genetics in rice. J South China Agric Univ, 2019,40(5):203-210 (in Chinese with English abstract).
[2] 侯俊, 周浩, 高冠军, 李平波, 何予卿, 张庆路. 利用F2和F3群体定位水稻粒形和千粒重QTL. 分子植物育种, 2019,17:3938-3944.
Hou J, Zhou H, Gao G J, Li P B, He Y Q, Zhang Q L. Mapping QTL for rice grain shape and 1000-grain weight using F2 and F3 populations. Mol Plant Breed, 2019,17:3938-3944 (in Chinese with English abstract).
[3] 李永洪, 李传旭, 刘成元, 何珊, 向箭宇, 谢戎. 利用岗46 B/A 232 RILs群体定位籼稻粒形和粒重的QTL. 分子植物育种, 2018,16:3956-3966.
Li Y H, Li C X, Liu C Y, He S, Xiang J Y, Xie R. Location of the QTL of grain shape and grain weight of indica rice by Gang 46B/A232RILs. Mol Plant Breed, 2018,16:3956-3966 (in Chinese with English abstract).
[4] 方先文, 张云辉, 肖西林, 张所兵, 林静, 汪迎节. 基于重组自交系群体的水稻粒形QTL定位. 江苏农业学报, 2017,33:241-247.
Fang X W, Zhang Y H, Xiao X L, Zhang S B, Lin J, Wang Y J. Mapping of QTLs for grain shape using recombinant inbred lines in rice (Oryza sativa L.). Jiangsu J Agric Sci, 2017,33:241-247 (in Chinese with English abstract).
[5] 李生强, 崔国昆, 关成冉, 王俊, 梁国华. 基于水稻单片段代换系的粒形QTL定位. 中国水稻科学, 2011,25:163-168.
Li S Q, Cui G K, Guan C R, Wang J, Liang G H. QTL detection for grain shape using chromosome single segment substitution lines. Chin J Rice Sci, 2011,25:163-168 (in Chinese with English abstract).
[6] 叶少平, 张启军, 李杰勤, 赵兵, 李平. 用(培矮64s/Nipponbare) F2群体对水稻产量构成性状的QTL定位分析. 作物学报, 2005,31:1620-1627.
Ye S P, Zhang Q J, Li J Q, Zhao B, Li P. QTL mapping for yield component traits using (Pei’ai 64s/Nipponbare) F2 population. Acta Agron Sin, 2005,31:1620-1627 (in Chinese with English abstract).
[7] 刘冠明, 李文涛, 曾瑞珍, 张泽民, 张桂权. 水稻单片段代换系代换片段的QTL鉴定. 遗传学报, 2004,31:1395-1400.
Liu G M, Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Identification of QTLs on substituted segments in single segment substitution lines of rice. Acta Genet Sin, 2004,31:1395-1400 (in Chinese with English abstract).
[8] 张丽霞, 刘丕庆, 刘学义. 染色体单片段代换系的构建及应用于QTL精细定位. 分子植物育种, 2004,2:743-746.
Zhang L X, Liu P Q, Liu X Y. Construction of chromosome single segment substitution lines and QTL fine mapping. Mol Plant Breed, 2004,2:743-746 (in Chinese with English abstract).
[9] Visscher P M, Brown M A, McCarthy M I, Yang J. Five years of GWAS discovery. Am J Hum Genet, 2012,90:7-24.
doi: 10.1016/j.ajhg.2011.11.029
[10] Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017,101:5-22.
doi: 10.1016/j.ajhg.2017.06.005
[11] Abe A, Kosugi S, Yoshida K, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-179.
doi: 10.1038/nbt.2095
[12] Lyn Y, Wang Y X, Noushin J, Hu H T, Chen P, Shang L G, Lin H Y, Dong G J, Hu J, Gao Z Y, Qiao Q, Zhang Y, Guo L B. Genome-wide association analysis and allelic mining of grain shape-related traits in rice. Rice Sci, 2019,26:384-392.
doi: 10.1016/j.rsci.2018.09.002
[13] 涂坦, 付洪. 水稻主要粒型基因及其遗传调控的研究进展. 山地农业生物学报, 2016,35(5):58-65.
Tu T, Fu H. Research progress in major genes controlling grain shape of rice and their genetic regulation. J Mount Agric Biol, 2016,35(5):58-65 (in Chinese with English abstract).
[14] Song X J, Huan W, Shi M, Zhu M Z, Lin X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014
[15] Hu J, Wang Y, Fang Y, Zeng L J, Xu J, Yu P H, Shi Z Y, Pan J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002
[16] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[17] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[18] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to Produce extra-long grains in rice. Mol Plant, 2018,11:754-756.
doi: 10.1016/j.molp.2018.03.006
[19] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018,11:736-749.
doi: 10.1016/j.molp.2018.03.005
[20] Ying Z J, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018,11:750-753.
doi: 10.1016/j.molp.2018.03.007
[21] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043.
doi: 10.1038/nplants.2017.43
[22] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209.
doi: 10.1038/cr.2008.307
[23] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977
[24] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612
[25] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J, 2020,103:1174-1188.
doi: 10.1111/tpj.v103.3
[26] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954.
doi: 10.1038/ng.3352
[27] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346
[28] Si L Z, Chen J Y, Huang X H, Gang H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shang-Guan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48:447-456.
doi: 10.1038/ng.3518
[29] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPLl6 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327
[30] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018,9:1240.
doi: 10.1038/s41467-018-03616-y
[31] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019,41:754-760.
Zhang G Q. The platform of breeding by design based on the SSSL library in rice. Hereditas, 2019,41:754-760 (in Chinese with English abstract).
[32] Andrews P B, Bishop M, Issar S, Nesmith D, Pfenning F, Xi H W. TPS: a theorem-proving system for classical type theory. J Autom Reason, 1996,16:321-353.
doi: 10.1007/BF00252180
[33] Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990,124:735-742.
pmid: 1968874
[34] Mackay T F C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet, 2014,15:22.
doi: 10.1038/nrg3627
[35] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018,9:852.
doi: 10.1038/s41467-018-03047-9
[36] 王军, 周勇, 杨杰, 朱金燕, 范方军, 李文奇, 梁国华, 仲维功. 利用染色体单片段代换系定位水稻粒重QTL. 华北农学报, 2013,28(6):11-17.
Wang J, Zhou Y, Yang J, Zhu J Y, Fan F J, Li W Q, Liang G H, Zhong W G. Mapping of QTLs for grain weight using chromosome single segment substitution lines in rice. Acta Agric Boreali-Sin, 2013,28(6):11-17 (in Chinese with English abstract).
[37] 邹德堂, 刘忠良, 赵宏伟, 孙健, 郑洪亮, 陈宾宾, 刘博文. 利用F2:3和BC2F2群体定位水稻粒型和粒重QTL. 东北农业大学学报, 2014,45(9):9-17.
Zou D T, Liu Z L, Zhao H W, Sun J, Zheng H L, Chen B B, Liu B W. Mapping QTLs for grain shape and weight using F2:3 and BC2F2 population in rice. J Northeast Agric Univ, 2014,45(9):9-17 (in Chinese with English abstract).
[38] 张亚东, 张颖慧, 董少玲, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 于新, 王才林. 特大粒水稻材料粒型性状的QTL检测. 中国水稻科学, 2013,27:122-128.
Zhang Y D, Zhang Y H, Dong S L, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L, Yu X, Wang C L. Identification of QTL for rice grain traits based on an extra-large grain material. Chin J Rice Sci, 2013,27:122-128 (in Chinese with English abstract).
[39] 蒋钰东, 罗俊涛, 况浩池, 杨扬, 陈光珍, 何兴材, 付均, 郑军, 曾正明. 利用两个籼稻杂交F2定位水稻粒型、粒重QTLs. 分子植物育种, 2015,13:1689-1694.
Jiang Y D, Luo J T, Kuang H C, Yang Y, Chen G Z, He X C, Fu J, Zheng J, Zeng Z M. Identification of QTLs for grain shape and weight using F2 generation of two indica rice varieties. Mol Plant Breed, 2015,13:1689-1694 (in Chinese with English abstract).
[40] Yu X Q, X S S, Xu Q K, Cui Y J, Gong M, Zeng D L, Zhang Q, Shen L, Jiao G A, Gao Z Y, Hu J, Zhang G H, Zhu L, Guo L B, Ren D Y, Qian Q. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Sci China Life Sci, 2020,63:228-238.
doi: 10.1007/s11427-019-1593-0
[41] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析. 作物学报, 2020,46:1517-1525.
Wang X L, Li W X, Zeng B H, Sun X T, Ou-Yang L J, Chen X R, He H H, Zhu C L. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines. Acta Agron Sin, 2020,46:1517-1525 (in Chinese with English abstract).
[42] Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol, 2020,227:629-640.
doi: 10.1111/nph.v227.2
[43] Lu B Y, Yang C Y, Xie K, Zhang L, Wu T, Li L F, Liu X, Jiang L, Wan J M. Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica, 2013,192:25-35.
doi: 10.1007/s10681-012-0822-x
[44] Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:17064.
doi: 10.1038/nplants.2017.64
[45] Dai Z J, Lu Q, Luan X, Ou-Yang L, Guo J, Liang J Y, Zhu H T, Wang W J, Wang S K, Zeng R Z, Liu Z Q, Zhang Z M, Zhu X Y, Zhang G Q. Development of a platform for breeding by design of CMS restorer lines based on an SSSL library in rice (Oryza sativa L.). Breed Sci, 2016,66:768-775.
doi: 10.1270/jsbbs.16044
[46] Luan X, Dai Z J, Yang W F, Tan Q Y, Lu Q, Guo J, Zhu H T, Liu G F, Wang S K, Zhang G Q. Breeding by design of CMS lines on the platform of SSSL library in rice. Mol Breed, 2019,39:126.
doi: 10.1007/s11032-019-1028-x
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!